• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 10, 2630 (2022)
KANG Lei1, BIAN Yankun1, TAI Weiwei2, SUN Na1, and BAI Yingzhi1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20220161 Cite this Article
    KANG Lei, BIAN Yankun, TAI Weiwei, SUN Na, BAI Yingzhi. Morphology and Desulfurization Performance of ZnO Nanorods[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2630 Copy Citation Text show less
    References

    [2] YUE Z, YING Y, et al. Shape controlled synthesis and growth mechanism of one-dimensional zinc oxide nanomaterials[J]. Rarer Met, 2004, 11(1): 23-29.

    [4] Tl A, PSA B, Dn A, et al. Specific Al mole ratio doping aided flake-like ZnO surface morphology nanostructures film for efficient window layer in CuInS2 photovoltaic cells[J]. Sol Energy, 2019, 177: 108-117.

    [5] NARA V K, CUI Y. Nanostructures for photon management iin solar cells[J]. Nanophotonics, 2013, 2(3): 187-210.

    [6] ALEXANDER M, SUR S, RAGHU S, et al. Semiconducting material of pure ZnO hollow nanospheres; and their modified electrode used for electrocatalytic reduction of ethanol and hydrogen peroxide[J]. Mater Sci Semicond Process, 2019, 99: 62-67.

    [8] REN Z, GUO X Y, WROBEL G, et al. Three dimensional koosh ball nanoarchitecture with a tunable magnetic core, fluorescent nanowire shell and enhanced photocatalytic property[J]. J Mater Chem, 2012, 22(14): 6862-6868.

    [9] BARRECA D, GASPAROTTO A, Maccato C, et al. Photoinduced superhydrophilicity and photocatalytic properties of ZnO nanoplatelets[J]. Surf Coat Technol, 2009, 203(14): 2041-2045.

    [10] REN Z, Botu V, WANG S, et al. Monolithically integrated spinel M(x)Co(3-x)O(4) (M=Co, Ni, Zn)nanoarray catalysts: Scalable synthesis and cation manipulation for tunable low-temperature CH(4) and CO oxidation[J]. Angew Chem, 2014, 53(28): 7223-7227.

    [12] KENNEDY O W, WHITE E R, SHAFFER. Vapour-liquid-solid growth of ZnO-ZnMgO core-shell nanowires by gold-catalysed molecular beam epitaxy[J]. Nanotechnology, 2019, 30(19): 1-5.

    [13] ZHANG Y, YANG Y, HAN H, et al. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: The effect of ZnO particle size on the adsorption performance[J]. Appl Catal, B, 2012, 119-120: 13-19.

    [14] BEHL M, YEOM J, LINEBERRY Q, et al. A regenerable oxide-based H2S adsorbent with nanofibrous morphology[J]. Nat nanotechnol, 2012, 7(12): 810-815.

    [15] GHARBI B, TAABOUCHE A, BRELLA M, et al. Spray pyrolysis synthesized and ZnO-NiO nanostructured thin films analysis with their nanocomposites for waveguiding applications[J]. Semiconductors, 2021, 55(1): 37-43.

    [16] SENDA T, BRADTR C, CERVAH, et al. Grain growth in sintering ZnO and ZnO Bi2O3 ceramics[ J]. J Am Ceram Soc, 1990, 73(1): 106-114.

    [17] Gunay V, Gelecek-Sulan O, Ozkan O T. Microstructure and crystal structure ofgrain growth kinetics in xCoO-6% Bi2O3-(94x)ZnO(x=0, 2, 4)ceramic system[J]. Ceram Int, 2004, 30: 105-110.

    [23] DELOBEL B, LARCHER D, BLACH J F, et al. One-step precipitation of nanometric LiMO2 powders (M=Co, Fe) in alcoholic media[J]. Solid State Ionics, 2010, 181(13/14): 623-630.

    [24] YAO Q, WANG C, FAN B, et al. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance[J]. Sci Rep, 2016, 6: 35505.

    [25] TONTO P, MEKA O, PHATA S, et al. Preparation of ZnO nanorod by solvothermal reaction of zinc acetate in various alcohols[J]. Ceram Inter, 2008, 34(1): 57-62.

    [26] BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review[J]. Fuel, 2003, 82(6): 607-631.

    [27] SIRIWARDANE R, V, GARDNER T, POSTON J A, et al. Spectroscopic characterization of nickel containing desulfurization sorbents[J]. Ind Eng Chem Res, 2000, 39(4): 1106-1110.

    [29] SUN Y F, GAO S, LEI F C, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis[J]. Chem Soc Rev, 2014, 44(3): 623-636.