• Photonics Research
  • Vol. 8, Issue 3, 343 (2020)
Bo Wang1、†, Xian-Zhe Zeng2、†, and Zhi-Yuan Li1、*
Author Affiliations
  • 1School of Physics and Optoelectronic Technology, South China University of Technology, Guangzhou 510640, China
  • 2School of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1364/PRJ.375135 Cite this Article Set citation alerts
    Bo Wang, Xian-Zhe Zeng, Zhi-Yuan Li. Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system[J]. Photonics Research, 2020, 8(3): 343 Copy Citation Text show less
    References

    [1] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [2] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [3] H. K. Lo, H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283, 2050-2056(1999).

    [4] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu. Ultrafast all-optical switching by single photons. Nat. Photonics, 6, 605-609(2012).

    [5] D. E. Chang, V. Vuletić, M. D. Lukin. Quantum nonlinear optics—photon by photon. Nat. Photonics, 8, 685-694(2014).

    [6] O. Benson. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 480, 193-199(2011).

    [7] J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, D. R. Smith. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 18, 668-678(2019).

    [8] E. T. Jaynes, F. W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE, 51, 89-109(1963).

    [9] G. Khitrova, H. Gibbs, M. Kira, S. W. Koch, A. Scherer. Vacuum Rabi splitting in semiconductors. Nat. Phys., 2, 81-90(2006).

    [10] R. Thompson, G. Rempe, H. Kimble. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett., 68, 1132-1135(1992).

    [11] G. Agarwal. Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity. Phys. Rev. Lett., 53, 1732-1734(1984).

    [12] A. Boca, R. Miller, K. Birnbaum, A. Boozer, J. McKeever, H. Kimble. Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett., 93, 233603(2004).

    [13] J. D. Thompson, T. Tiecke, N. P. de Leon, J. Feist, A. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, M. D. Lukin. Coupling a single trapped atom to a nanoscale optical cavity. Science, 340, 1202-1205(2013).

    [14] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314-3317(1992).

    [15] J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, A. Forchel. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 432, 197-200(2004).

    [16] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, D. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 200-203(2004).

    [17] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445, 896-899(2007).

    [18] E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, J. Bloch. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 95, 067401(2005).

    [19] T. Hakala, J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, P. Törmä. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett., 103, 053602(2009).

    [20] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, T. Shegai. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 114, 157401(2015).

    [21] R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, X.-H. Wang. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett., 118, 237401(2017).

    [22] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [23] J. Bellessa, C. Bonnand, J. Plenet, J. Mugnier. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 93, 036404(2004).

    [24] A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, M. Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450, 402-406(2007).

    [25] D. Gomez, K. Vernon, P. Mulvaney, T. Davis. Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. Nano Lett., 10, 274-278(2009).

    [26] A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, N. J. Halas. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett., 13, 3281-3286(2013).

    [27] H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, Q. Gong. Efficient single photon emission and collection based on excitation of gap surface plasmons. Phys. Rev. Lett., 114, 193002(2015).

    [28] J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, Q. Gong. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection. Phys. Rev. Lett., 118, 073604(2017).

    [29] T. J. Antosiewicz, S. P. Apell, T. Shegai. Plasmon-exciton interactions in a core-shell geometry: from enhanced absorption to strong coupling. ACS Photon., 1, 454-463(2014).

    [30] A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, T. Shegai. Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems. Nano Lett., 19, 189-196(2019).

    [31] T. P. Rossi, T. Shegai, P. Erhart, T. J. Antosiewicz. Strong plasmon-molecule coupling at the nanoscale revealed by first-principles modeling. Nat. Commun., 10, 3336(2019).

    [32] G. Khitrova, H. Gibbs, F. Jahnke, M. Kira, S. Koch. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys., 71, 1591-1639(1999).

    [33] Z. Y. Li. Mesoscopic and microscopic strategies for engineering plasmon-enhanced Raman scattering. Adv. Opt. Mater., 6, 1701097(2018).

    [34] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419-422(2003).

    [35] C. Ciracì, R. Hill, J. Mock, Y. Urzhumov, A. Fernández-Domínguez, S. Maier, J. Pendry, A. Chilkoti, D. Smith. Probing the ultimate limits of plasmonic enhancement. Science, 337, 1072-1074(2012).

    [36] X.-L. Zhong, Z.-Y. Li. All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity. Phys. Rev. B, 88, 085101(2013).

    [37] J. Li, H. Guo, Z.-Y. Li. Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures. Photon. Res., 1, 28-41(2013).

    [38] H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas. Nanorice: a hybrid plasmonic nanostructure. Nano Lett., 6, 827-832(2006).

    [39] M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. D. Pury, C. Große, B. D. Nijs, J. Mertens, A. I. Tartakovskii, J. J. Baumberg. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun., 8, 1296(2017).

    [40] P. Törmä, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys., 78, 013901(2014).

    [41] T. Hartsfield, W.-S. Chang, S.-C. Yang, T. Ma, J. Shi, L. Sun, G. Shvets, S. Link, X. Li. Single quantum dot controls a plasmonic cavity’s scattering and anisotropy. Proc. Natl. Acad. Sci. USA, 112, 12288-12292(2015).

    [42] Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photon., 6, 56-61(2012).

    [43] X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, V. M. Menon. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photon., 9, 30-34(2015).

    [44] P. Meystre, M. Sargent. Elements of Quantum Optics(2007).

    [45] R. L. Liboff. Introductory Quantum Mechanics(2003).

    [46] K. Patil, R. Pawar, P. Talap. Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea. Phys. Chem. Chem. Phys., 2, 4313-4317(2000).

    [47] R. C. Hilborn. Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys., 50, 982-986(1982).

    [48] P. Nordlander, C. Oubre, E. Prodan, K. Li, M. Stockman. Plasmon hybridization in nanoparticle dimers. Nano Lett., 4, 899-903(2004).

    [49] A. Yariv, P. Yeh. Photonics(2007).

    [50] M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, D. Hommel. Superradiance of quantum dots. Nat. Phys., 3, 106-110(2007).

    Bo Wang, Xian-Zhe Zeng, Zhi-Yuan Li. Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system[J]. Photonics Research, 2020, 8(3): 343
    Download Citation