• Acta Photonica Sinica
  • Vol. 47, Issue 2, 230002 (2018)
LIU Zhi-wei*, LI Zi-wen, LI Ya-fei, ZHENG Wen-xue, ZHENG Chuan-tao, and WANG Yi-ding
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20184702.0230002 Cite this Article
    LIU Zhi-wei, LI Zi-wen, LI Ya-fei, ZHENG Wen-xue, ZHENG Chuan-tao, WANG Yi-ding. Pressure Measurement and Compensation for Mid-infrared Methane Detection[J]. Acta Photonica Sinica, 2018, 47(2): 230002 Copy Citation Text show less
    References

    [1] KARION A, SWEENEY C, PETRON G,et al. Methane emissions estimate from airborne measurements over a western United States natural gas field[J]. Geophysical Research Letters, 2013, 40(16): 4393-4397.

    [2] MILLER S M, WOFSY S C, MICHALAK A M, et al. Anthropogenic emissions of methane in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(50): 20018-20022.

    [3] BRANDT A R, HEATH G A, KORT E A, et al. Methane leaks from north american natural gas systems[J]. Science, 2014, 343(6172): 733-735 .

    [4] SCHWIETZKE S, GRIFFIN W M, MATTHEWS H S, et al. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane[J]. Environmental Science & Technology, 2014, 48(14): 7714-7722.

    [5] LANCASTER D G, WEIDNER R, RICHTER D, et al. Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3[J]. Optics Communications, 2000, 175(4-6): 461-468.

    [6] LANCASTER D G, DAWES J M. Methane detection with a narrow-band source at 3.4 μm based on a Nd: YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing[J]. Applied Optics, 1996, 35(21): 4041-4045.

    [7] FISCHER C, SIGRIST M W. Trace-gas sensing in the 3.3 μm region using a diode-based difference-frequency laser photoacoustic system[J]. Applied Physics B: Lasers and Optics, 2002, 75(2-3): 305-310.

    [8] RICHTER D, LANCASTER D G, CURL R F, et al. Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3[J]. Applied Physics B: Lasers and Optics, 1998, 67(3): 347-350.

    [9] PETROY K P, WALTMAN S, DLUGOKANCKY E J,et al. Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN[J]. Applied Physics B: Lasers and Optics, 1997, 64(5): 567-572.

    [10] SILVER J A. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimentalmethods[J]. Applied Optics, 1992, 31(6): 707-717.

    [11] WERLE P, Review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54(2): 197-236.

    [12] SCHILT S, THEVENAZ L, ROBERT P. Wavelength modulation spectroscopy: combined frequency and intensity laser modulation[J]. Applied Optics, 2003, 42(33): 6728-6738.

    [13] HE Q, DANG P, LIU Z, et al. TDLAS-WMS based near-infrared methane sensor system using hollow-core photonic crystal fiber as gas-chamber[J]. Optical and Quantum Electronics, 2017, 49(3): 115.

    [14] YE W, LI C, ZHENG C,et al. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser[J]. Optics Express, 2016, 24(15): 16973-16985.

    [15] JOULLIE A, CHRISTOL P, GaSb-based mid-infrared 2-5 μm laser diodes[J]. Comptes Rendus Physique, 2003, 4(6): 621-637.

    [16] MOTYKA M, SEK G, RYCZKO K, et al. Optical properties of GaSb-based type II quantum wells as the active region of midinfrared interband cascade lasers for gas sensing applications[J]. Applied Physics Letters, 2009, 94(25): 251901.

    [17] VURGAFTMAN I, BEWLEY W W, CANEDY C L, et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2011, 2(1): 585.

    LIU Zhi-wei, LI Zi-wen, LI Ya-fei, ZHENG Wen-xue, ZHENG Chuan-tao, WANG Yi-ding. Pressure Measurement and Compensation for Mid-infrared Methane Detection[J]. Acta Photonica Sinica, 2018, 47(2): 230002
    Download Citation