• High Power Laser and Particle Beams
  • Vol. 34, Issue 12, 122005 (2022)
Zongqiang Yuan, Zhigang Deng, Jian Teng, Weiwu Wang, Tiankui Zhang, Feng Zhang, Chao Tian, Qiuyue Xu, Lianqiang Shan*, Weimin Zhou*, and Yuqiu Gu
Author Affiliations
  • Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202234.220288 Cite this Article
    Zongqiang Yuan, Zhigang Deng, Jian Teng, Weiwu Wang, Tiankui Zhang, Feng Zhang, Chao Tian, Qiuyue Xu, Lianqiang Shan, Weimin Zhou, Yuqiu Gu. Geant4 simulations of measurement of energy spectra of reflected ions generated by nanosecond-laser-drive non-relativistic collisionless electrostatic shocks[J]. High Power Laser and Particle Beams, 2022, 34(12): 122005 Copy Citation Text show less
    References

    [1] Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 506, 343-348(2014).

    [2] Zylstra A B, Hurricane O A, Callahan D A, et al. Burning plasma achieved in inertial fusion[J]. Nature, 601, 542-548(2022).

    [3] Kritcher A L, Young C V, Robey H F, et al. Design of inertial fusion implosions reaching the burning plasma regime[J]. Nature Physics, 18, 251-258(2022).

    [4] Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 129, 075001(2022).

    [5] Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 106, 025202(2022).

    [6] Kritcher A L, Zylstra A B, Callahan D A, et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition[J]. Physical Review E, 106, 025201(2022).

    [7] Amendt P, Landen O L, Robey H F, et al. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures[J]. Physical Review Letters, 105, 115005(2010).

    [8] Rinderknecht H G, Sio H, Li C K, et al. First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions[J]. Physical Review Letters, 112, 135001(2014).

    [9] Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions[J]. Physical Review Letters, 112, 185001(2014).

    [10] Le Pape S, Divol L, Huser G, et al. Plasma collision in a gas atmosphere[J]. Physical Review Letters, 124, 025003(2020).

    [11] Rygg J R, Séguin F H, Li C K, et al. Proton radiography of inertial fusion implosions[J]. Science, 319, 1223-1225(2008).

    [12] Li C K, Séguin F H, Frenje J A, et al. Charged-particle probing of X-ray-driven inertial-fusion implosions[J]. Science, 327, 1231-1235(2010).

    [13] Li C K, Séguin F H, Frenje J A, et al. Impeding hohlraum plasma stagnation in inertial-confinement fusion[J]. Physical Review Letters, 108, 025001(2012).

    [14] Hua R, Kim J, Sherlock M, et al. Self-generated magnetic and electric fields at a Mach-6 shock front in a low density helium gas by dual-angle proton radiography[J]. Physical Review Letters, 123, 215001(2019).

    [15] Jones O S, Cerjan C J, Marinak M M, et al. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments[J]. Physics of Plasmas, 19, 056315(2012).

    [16] Hopkins L F B, Meezan N B, Le Pape S, et al. First high-convergence cryogenic implosion in a near-vacuum hohlraum[J]. Physical Review Letters, 114, 175001(2015).

    [17] Hopkins L F B, Le Pape S, Divol L, et al. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators[J]. Physics of Plasmas, 22, 056318(2015).

    [18] Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics and Controlled Fusion, 60, 064001(2018).

    [19] Shan L Q, Cai H B, Zhang W S, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 120, 195001(2018).

    [20] Cai H B, Shan L Q, Yuan Z Q, et al. Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. High Energy Density Physics, 36, 100756(2020).

    [21] Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, . Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 33, 012004(2021).

    [22] Cai Hongbo, Zhang Wenshuai, Du Bao, . Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[J]. High Power Laser and Particle Beams, 32, 092007(2020).

    [23] Wei M S, Mangles S P D, Najmudin Z, et al. Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction[J]. Physical Review Letters, 93, 155003(2004).

    [24] Zhang H, Shen B F, Wang W P, et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 119, 164801(2017).

    [25] He S K, Jiao J L, Deng Z G, et al. Generation of ultrahigh-velocity collisionless electrostatic shocks using an ultra-intense laser pulse interacting with foil-gas target[J]. Chinese Physics Letters, 36, 105201(2019).

    [26] Schmid K, Veisz L. Supersonic gas jets for laser-plasma experiments[J]. Review of Scientific Instruments, 83, 053304(2012).

    [27] Fryxell B, Olson K, Ricker P, et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes[J]. The Astrophysical Journal Supplement Series, 131, 273-334(2000).

    [28] Balogh A, Treumann R A. Physics of collisionless shocks[M]. New Yk: Springer, 2013: 1500.

    Zongqiang Yuan, Zhigang Deng, Jian Teng, Weiwu Wang, Tiankui Zhang, Feng Zhang, Chao Tian, Qiuyue Xu, Lianqiang Shan, Weimin Zhou, Yuqiu Gu. Geant4 simulations of measurement of energy spectra of reflected ions generated by nanosecond-laser-drive non-relativistic collisionless electrostatic shocks[J]. High Power Laser and Particle Beams, 2022, 34(12): 122005
    Download Citation