• Photonics Research
  • Vol. 13, Issue 6, 1637 (2025)
Hanjie Wang1, Xingyu Zhu1, Xiaobin Weng1, Lanxin Deng2..., Yitao Zheng1, Zihan Shen1, Huiyue You1, Huajun Tang3, Xin Dong3, Mingyu Li2, Shengchuang Bai4,6, Jun Dong1,5,7 and Hongsen He1,5,*|Show fewer author(s)
Author Affiliations
  • 1Laboratory of Laser and Applied Photonics (LLAP), Department of Electronic Engineering, Xiamen University, Xiamen 361102, China
  • 2Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
  • 3Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
  • 4Laboratory of Infrared Material and Devices, Research Institute of Advanced Technologies, College of Information Science and Engineering, Ningbo University, Ningbo 315211, China
  • 5Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361102, China
  • 6e-mail: baishengchuang@nbu.edu.cn
  • 7e-mail: jdong@xmu.edu.cn
  • show less
    DOI: 10.1364/PRJ.553607 Cite this Article Set citation alerts
    Hanjie Wang, Xingyu Zhu, Xiaobin Weng, Lanxin Deng, Yitao Zheng, Zihan Shen, Huiyue You, Huajun Tang, Xin Dong, Mingyu Li, Shengchuang Bai, Jun Dong, Hongsen He, "Hand-held laser for miniature photoacoustic microscopy: triggerable, millimeter scale, cost-effective, and functional," Photonics Res. 13, 1637 (2025) Copy Citation Text show less
    References

    [1] L. V. Wang. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics, 3, 503-509(2009).

    [2] J. Yao, L. V. Wang. Photoacoustic microscopy. Laser Photonics Rev., 7, 758-778(2013).

    [3] B. Park, M. Han, H. Kim. Shear-force photoacoustic microscopy: toward super-resolution near-field imaging. Laser Photonics Rev., 16, 2200296(2022).

    [4] R. Cao, J. Zhao, L. Li. Optical-resolution photoacoustic microscopy with a needle-shaped beam. Nat. Photonics, 17, 89-95(2023).

    [5] H. Lee, M. R. Seeger, B. E. Bouma. Electronically controlled dual-wavelength switchable SRS fiber amplifier in the NIR-II region for multispectral photoacoustic microscopy. Laser Photonics Rev., 18, 2400144(2024).

    [6] J. Shi, T. T. W. Wong, Y. He. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics, 13, 609-615(2019).

    [7] S. W. Cho, S. M. Park, B. Park. High-speed photoacoustic microscopy: a review dedicated on light sources. Photoacoustics, 24, 100291(2021).

    [8] C. Li, J. Shi, X. Wang. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids. Photonics Res., 8, 160-164(2020).

    [9] X. Shu, M. Bondu, B. Dong. Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography. Opt. Lett., 41, 2743-2746(2016).

    [10] H. Lee, M. R. Seeger, N. Lippok. Nanosecond SRS fiber amplifier for label-free near-infrared photoacoustic microscopy of lipids. Photoacoustics, 25, 100331(2022).

    [11] J. Chen, Y. Zhang, X. Li. Confocal visible/NIR photoacoustic microscopy of tumors with structural, functional, and nanoprobe contrasts. Photonics Res., 8, 1875-1880(2020).

    [12] M. Kuniyil Ajith Singh, W. Xia. Portable and affordable light source-based photoacoustic tomography. Sensors, 20, 6173(2020).

    [13] A. Hariri, J. Lemaster, J. Wang. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics, 9, 10-20(2018).

    [14] J. Ahn, J. Y. Kim, W. Choi. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers. Photoacoustics, 23, 100282(2021).

    [15] S. Kou, S. Thakur, A. Eltahir. A portable photoacoustic microscopy and ultrasound system for rectal cancer imaging. Photoacoustics, 39, 100640(2024).

    [16] F. Yang, Z. Wang, W. Shi. Advancing insights into in vivo meningeal lymphatic vessels with stereoscopic wide-field photoacoustic microscopy. Light Sci. Appl., 13, 96(2024).

    [17] M. Zhao, Q. Zhang, D. Li. Highly sensitive self-focused ultrasound transducer with a bionic back-reflector for multiscale-resolution photoacoustic microscopy. Opt. Express, 32, 1501-1511(2024).

    [18] W. Shi, S. Kerr, I. Utkin. Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers. J. Biomed. Opt., 15, 056017(2010).

    [19] H. He, H. Wang, H. You. 30–100 kHz, 2 ns passively Q-switched laser for fast and efficient photoacoustic microscopy. J. Biophotonics, 17, e202300437(2024).

    [20] H. Wang, L. Zhao, H. You. Dual-wavelength, nanosecond, miniature Raman laser enables efficient photoacoustic differentiation of water and lipid. APL Photonics, 9, 096104(2024).

    [21] D.-K. Yao, K. Maslov, L. Wang. Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei. J. Biomed. Opt., 17, 056004(2012).

    [22] https://omlc.org/spectra/. https://omlc.org/spectra/

    [23] J. Hui, R. Li, E. H. Phillips. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics, 4, 11-21(2016).

    [24] S. Zhu, Z. Chen, Z. Chen. A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal. Opt. Laser Technol., 63, 24-28(2014).

    [25] J. Kojou, Y. Watanabe, Y. Kojima. Intracavity second-harmonic generation at 320 nm of an actively Q-switched Pr:LiYF4 laser. Appl. Opt., 51, 1382-1386(2012).

    [26] S. Zhu, H. Zhou, W. Jiang. Compact and efficient passively Q-switched laser at 473 nm with an Nd:YAG/YAG/Cr4+:YAG/YAG multifunctional composite crystal. Appl. Opt., 55, 4166-4169(2016).

    [27] Z. Quan, Z. Ling, Y. Ziqing. LD-pumped passively Q-switched Nd:YVO4 infrared and green lasers. Opt. Laser Technol., 33, 355-357(2001).

    [28] Y. F. Chen. Passive Q-switching of an intracavity frequency doubled diode-pumped Nd:YVO4/KTP green laser with Cr4+:YAG. IEEE Photonics Technol. Lett., 9, 1481-1483(1997).

    [29] S. Luo, X. Yan, B. Xu. Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers. Opt. Commun., 406, 61-65(2018).

    [30] C. Liu, J. Chen, Y. Zhang. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels. Adv. Photonics, 3, 016002(2021).

    [31] P. Pichon, F. Druon, J.-P. Blanchot. LED-pumped passively Q-switched Cr:LiSAF laser. Opt. Lett., 43, 4489-4492(2018).

    [32] X. Yu, R. Yan, X. Li. High power 2 MHz passively Q-switched nanosecond Nd:YVO4/Cr4+:YAG 914 nm laser. Appl. Opt., 51, 2728-2732(2012).

    [33] M. Nägele, K. Stoppel, T. Dekorsy. Passively Q-switched 914 nm microchip laser for lidar systems. Opt. Express, 29, 23799-23809(2021).

    [34] J. Dong, P. Deng, M. Bass. Cr,Nd:YAG self-Q-switched laser with high efficiency output. Opt. Laser Technol., 34, 589-594(2002).

    [35] Q. He, B. Zhang, Z. Jiao. Short-pulse Nd:YAG/Cr:YAG microchip laser with pulse duration of <200 ps. IEEE Photonics Technol. Lett., 34, 717-720(2022).

    [36] F. Q. Liu, J. L. He, S. Q. Sun. LD-pumped Nd:GdVO4 Raman laser at 1166 nm with LiIO3 crystal. Laser Phys. Lett., 8, 579(2011).

    [37] K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich. Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser. Opt. Lett., 41, 918-921(2016).

    [38] Y. Duan, J. Liu, H. Wang. KTA-OPO for 1742 nm laser generation driven by a composite Nd:YVO4-based self-Raman laser. Opt. Express, 32, 18997-19005(2024).

    [39] F. Bai, Q. Wang, Z. Liu. Efficient 1.8 μm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser. Opt. Lett., 36, 813-815(2011).

    [40] S. R. Chinn, L. Goldberg, V. King. Experimental and modeled output characteristics of a compact, passively Q-Switched Tm:YLF laser. IEEE J. Quantum Electron., 59, 1700208(2023).

    Hanjie Wang, Xingyu Zhu, Xiaobin Weng, Lanxin Deng, Yitao Zheng, Zihan Shen, Huiyue You, Huajun Tang, Xin Dong, Mingyu Li, Shengchuang Bai, Jun Dong, Hongsen He, "Hand-held laser for miniature photoacoustic microscopy: triggerable, millimeter scale, cost-effective, and functional," Photonics Res. 13, 1637 (2025)
    Download Citation