• Chinese Journal of Lasers
  • Vol. 47, Issue 1, 0101001 (2020)
Wei Huang, Zhixian Li, Yulong Cui, Zhiyue Zhou, and Zefeng Wang*
Author Affiliations
  • State Key Laboratory of Pulsed Power Laser Technology, Hunan Provincial Key Laboratory of High Energy Laser Technology, College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/CJL202047.0101001 Cite this Article Set citation alerts
    Wei Huang, Zhixian Li, Yulong Cui, Zhiyue Zhou, Zefeng Wang. Experimental Research on Stimulated Raman Scattering of Deuterium Gas in Anti-Resonance Hollow-Core Fibers[J]. Chinese Journal of Lasers, 2020, 47(1): 0101001 Copy Citation Text show less
    References

    [1] Minck R W, Terhune R W, Rado W G. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4[J]. Applied Physics Letters, 3, 181-184(1963).

    [2] Brink D J, Proch D. Efficient tunable ultraviolet source based on stimulated Raman scattering of an excimer-pumped dye laser[J]. Optics Letters, 7, 494-496(1982).

    [3] Loree T R, Cantrell C D, Barker D L. Stimulated Raman emission at 9.2 μm from hydrogen gas[J]. Optics Communications, 17, 160-162(1976).

    [4] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [5] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).

    [6] Benabid F, Bouwmans G, Knight J C et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Physical Review Letters, 93, 123903(2004).

    [7] Couny F, Benabid F, Light P S. Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 99, 143903(2007).

    [8] Couny F, Benabid F, Light P S. Large-pitch Kagome-structured hollow-core photonic crystal fiber[J]. Optics Letters, 31, 3574-3576(2006).

    [9] Pryamikov A D, Biriukov A S, Kosolapov A F et al. Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm[J]. Optics Express, 19, 1441-1448(2011).

    [10] Yu F, Wadsworth W J, Knight J C. Low loss silica hollow core fibers for 3-4 μm spectral region[J]. Optics Express, 20, 11153-11158(2012).

    [11] Yu F, Knight J C. Negative curvature hollow-core optical fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 146-155(2016).

    [12] Gao S F, Wang Y Y, Ding W et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 9, 2828(2018).

    [13] Habib M S. Antonio-Lopez J E, Markos C, et al. Single-mode, low loss hollow-core anti-resonant fiber designs[J]. Optics Express, 27, 3824-3836(2019).

    [14] Gao S F, Wang Y Y, Wang P. Research progress on hollow-core anti-resonant fiber and gas Raman laser technology[J]. Chinese Journal of Lasers, 46, 0508014(2019).

    [15] Wang Z F, Yu F, Wadsworth W J et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 11, 105807(2014).

    [16] Wang Z F, Yu F, Wadsworth W J et al. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 34, 0814004(2014).

    [17] Li Z X, Huang W, Cui Y L et al. Efficient high power, narrow linewidth 1.9 μm fiber hydrogen Raman amplifier[J]. Applied Optics, 57, 3902-3906(2018).

    [18] Chen Y B, Gu B, Wang Z F et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 36, 0506002(2016).

    [19] Chen Y B, Wang Z F, Gu B et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth[J]. Optics Letters, 41, 5118-5121(2016).

    [20] Chen Y B, Wang Z F, Gu B et al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 37, 0514002(2017).

    [21] Chen Y B, Wang Z F, Li Z X et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm[J]. Optics Express, 25, 20944-20949(2017).

    [22] Li Z X, Huang W, Cui Y L et al. 0.83 W, single-pass, 1.54 μm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure[J]. Optics Express, 26, 12522-12529(2018).

    [23] Cao L, Gao S F, Peng Z G et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 26, 5609-5615(2018).

    [24] Li Z X, Huang W, Cui Y L et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm[J]. Optics Letters, 43, 4671-4674(2018).

    [25] Gladyshev A V, Kosolapov A F, Khudyakov M M et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by 1H2/D2 gas mixture[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903008(2018).

    [26] Huang W, Cui Y L, Li Z X et al. 1.56 μm and 2.86 μm Raman lasers based on gas-filled anti-resonance hollow-core fiber[J]. Chinese Optics Letters, 17, 071406(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ535f53266e739d7b

    [27] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [28] Thomas M A, Welsh H L. The Raman spectrum of methane[J]. Canadian Journal of Physics, 38, 1291-1303(1960).

    Wei Huang, Zhixian Li, Yulong Cui, Zhiyue Zhou, Zefeng Wang. Experimental Research on Stimulated Raman Scattering of Deuterium Gas in Anti-Resonance Hollow-Core Fibers[J]. Chinese Journal of Lasers, 2020, 47(1): 0101001
    Download Citation