• Acta Photonica Sinica
  • Vol. 52, Issue 12, 1210004 (2023)
Shuai HAO, Jiahao LI, Xu MA*, Tian HE..., Siyan SUN and Tong LI|Show fewer author(s)
Author Affiliations
  • College of Electrical and Control Engineering,Xi'an University of Science and Technology,Xi'an 710054,China
  • show less
    DOI: 10.3788/gzxb20235212.1210004 Cite this Article
    Shuai HAO, Jiahao LI, Xu MA, Tian HE, Siyan SUN, Tong LI. Infrared and Visible Image Fusion Algorithm Based on Feature Optimization and GAN[J]. Acta Photonica Sinica, 2023, 52(12): 1210004 Copy Citation Text show less
    Block diagram of the proposed algorithm
    Fig. 1. Block diagram of the proposed algorithm
    LatLRR decomposition results
    Fig. 2. LatLRR decomposition results
    Comparison chart before and after optimization
    Fig. 3. Comparison chart before and after optimization
    MSDC-Fem structure diagram
    Fig. 4. MSDC-Fem structure diagram
    Attention fusion process
    Fig. 5. Attention fusion process
    Feature reconstruction module
    Fig. 6. Feature reconstruction module
    Discriminator structure
    Fig. 7. Discriminator structure
    Subjective experimental results comparison
    Fig. 8. Subjective experimental results comparison
    Objective experimental result comparison
    Fig. 9. Objective experimental result comparison
    Loss function curve
    Fig. 10. Loss function curve
    n:number of chameleons in search space
    d:spatial dimension
    t:number of iterations,T:max-number of iterations
    Build adaptive optimization image:Io=yIB+ID
    Design objective function for optimizing parameter y
    F=min(LAG+LSD+λLCON)
    Initialize a population of n chameleons within the search space
    yi=lj+r×(uj-lj)
    Evaluate the fitness of each chameleon using the objective function F
    While(t < T)do
    Step1:Search for prey
    for i=1 to n do
    for j=1 to d do
    if riPp then
    yti,j+p1(pti,j-Gtj)r2+p2(Gtj-yti,j) r1 
    else
    yti,j+μlbjsgn(rand-0.5)+ μ[(uj-lj)r3]sgn(rand-0.5)
    end if
    end for
    end for
    Step2:Eyes’ rotation reveals prey
    for i=1 to n do
    yt+1i=m×(yti-y¯ti)+y¯ti
    end for
    Step3:Hunting process for prey
    for i=1 to n do
    for j=1 to d do
    yt+1i,j=yti,j+[(vti,j)2-(vt-1i,j)2]/(2a)
    end for
    end for
    Evaluate the new positions of the chameleons
    Update the position of the chameleons
    Evaluate the fitness of each chameleon
    Return best solution y
    t = t + 1
    end while
    Obtain the global optimal solution y,and then obtain the optimized image Io
    Table 1. Adaptive optimization of objective function based on CSA
    step1:for M epochs do
    step2:for p times do
    step3:select b visible image samples:{Ivis1,Ivis2,,Ivisb}
    step4:select b infrared image samples:{Iir1,Iir2,,Iirb}
    step5:select b fusion image samples:{Ifused1,Ifused2,,Ifusedb}

    step6:Using the Adam optimizer to update discriminator parameters:

    D(LD=LD-ir+LD-vis)

    step7:end for
    step8:select b visible image samples:{Ivis1,Ivis2,,Ivisb}
    step9:select b infrared image samples:{Iir1,Iir2,,Iirb}

    step10:Using the Adam optimizer to update generator parameters:

    G(LG=Ladv+λ1Lcontent)

    step11:end for
    Table 2. Training process of network model

    Algorithms

    DenseFuse

    FusionGAN

    ResNet-ZCA

    MDLatLRR

    PMGI

    RFN-Nest

    Ours

    Time

    0.124

    1.846

    1.719

    5.846

    0.637

    0.284

    0.451 9

    Table 3. Average running time of different algorithms(units:s)
    Module AModule BModule CENSFJEVIFSSIMQAB/F
    6.389 55.864 211.956 10.664 20.813 40.307 0
    6.415 86.468 511.990 70.693 40.824 60.350 9
    6.625 87.130 112.128 40.691 50.826 90.377 1
    6.489 66.256 112.034 20.689 80.819 80.315 9
    6.842 97.956 012.362 90.715 30.863 70.388 0
    6.559 36.594 712.186 30.708 80.820 40.375 9
    6.952 48.556 312.461 20.833 50.822 50.411 8
    7.168 810.006 512.650 90.868 60.854 20.457 4
    Table 4. Ablation experiments objectively results comparison
    Shuai HAO, Jiahao LI, Xu MA, Tian HE, Siyan SUN, Tong LI. Infrared and Visible Image Fusion Algorithm Based on Feature Optimization and GAN[J]. Acta Photonica Sinica, 2023, 52(12): 1210004
    Download Citation