• Matter and Radiation at Extremes
  • Vol. 10, Issue 2, 027802 (2025)
Yan Liu1,*, Tian Cui2, and Da Li1
Author Affiliations
  • 1State Key Laboratory of High Pressure and Superhard Materials and Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, Jilin, China
  • 2School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, China
  • show less
    DOI: 10.1063/5.0252519 Cite this Article
    Yan Liu, Tian Cui, Da Li. Leading role of satellite interstitial electrons in superconductivity in ternary superlithide Li14CP[J]. Matter and Radiation at Extremes, 2025, 10(2): 027802 Copy Citation Text show less
    References

    [1] R.Hoffmann, M. S.Miao. High pressure electrides: A predictive chemical and physical theory. Acc. Chem. Res., 47, 1311-1317(2014).

    [2] X.Dong, A. F.Goncharov, S.Lobanov, A. R.Oganov, E.Stavrouet?al.. A stable compound of helium and sodium at high pressure. Nat. Chem., 9, 440-445(2017).

    [3] J.Cioslowski. Nonnuclear attractors in the lithium dimeric molecule. J. Phys. Chem., 94, 5496-5498(1990).

    [4] Y. T.Gong, H.Hosono, K.Li, J. J.Wang. Electron-deficient-type electride Ca5Pb3: Extension of electride chemical space. J. Am. Chem. Soc., 143, 8821-8828(2021).

    [5] T.Katase, J.Kim, H.Mizoguchi, S.-W.Park, G. V.Vazheninet?al.. Origin of metallic nature of Na3N. J. Am. Chem. Soc., 143, 69-72(2021).

    [6] M. L.Evans, Y. T.Gong, S. Y.Wang, Z. Q.Wang, Y. J.Yanet?al.. Machine learning-accelerated discovery of A2BC2 ternary electrides with diverse anionic electron densities. J. Am. Chem. Soc., 145, 26412-26424(2023).

    [7] L. A.Burton, C.Liu, S. A.Nikolaev, W.Ren. Electrides: A review. J. Mater. Chem. C, 8, 10551-10567(2020).

    [8] R. J.Needs, C. J.Pickard. Dense low-coordination phases of lithium. Phys. Rev. Lett., 102, 146401(2009).

    [9] H.Hosono, M.Kitano. Advances in materials and applications of inorganic electrides. Chem. Rev., 121, 3121-3185(2021).

    [10] X.Chen, P.Jiang, Y. G.Li, D.Zhang, X. H.Zhenget?al.. Pressure-tuned one- to quasi-two-dimensional structural phase transition and superconductivity in LiP15. Phys. Rev. B, 105, 094109(2022).

    [11] J.Cho, S. Y.Liu, C. Z.Wang, S. H.Yi. Underlying mechanism of charge transfer in Li-doped MgH16 at high pressure. Phys. Rev. B, 102, 184509(2020).

    [12] L.Boeri, C.Heil, C.Kokail. Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system. Phys. Rev. B, 94, 060502(2016).

    [13] R.Hoffmann, X. D.Wen, E.Zurek. (Barely) Solid Li(NH3)4: The electronics of an expanded metal. J. Am. Chem. Soc., 133, 3535-3547(2011).

    [14] N. W.Ashcroft, A.Hermann, R.Hoffmann, A.McSorley. From Wade–Mingos to Zintl–Klemm at 100 GPa: Binary compounds of boron and lithium. J. Am. Chem. Soc., 134, 18606-18618(2012).

    [15] J.Botana, J.Brgoch, C. J.Hou, M. S.Miao. Iodine anions beyond −1: Formation of LinI (n = 2–5) and its interaction with quasiatoms. Inorg. Chem., 55, 9377-9382(2016).

    [16] M.Eremets, Y. M.Ma, A. R.Oganov, I.Trojan, Y.Xieet?al.. Transparent dense sodium. Nature, 458, 182-185(2009).

    [17] B.Wan, Y.Xu, Y. F.Yuan, S. J.Zhao, L.Zhenget?al.. BaCu, a two-dimensional electride with Cu anions. J. Am. Chem. Soc., 146, 17508-17516(2024).

    [18] Y. M.Ma, A. R.Oganov, Y.Xie. Novel high pressure structures and superconductivity of CaLi2. Phys. Rev. Lett., 104, 177005(2010).

    [19] X.Dong, C. M.Hao, J. Y.Hou, A. R.Oganov, X. J.Wenget?al.. Helium-bearing superconductor at high pressure. Phys. Rev. B, 106, L220501(2022).

    [20] J.Chen, W. W.Cui, K.Gao, T. T.Gu, Q. F.Wanget?al.. Pressure-stabilized superconducting electride Li5C. Phys. Rev. B, 106, 054519(2022).

    [21] Z. Y.Wan, W. J.Xu, T. Y.Yang, C.Zhang, R. Q.Zhang. Predicted superconductivity and superionic state in the electride Li5N under high pressure. New J. Phys., 24, 113012(2022).

    [22] V. A.Blatov, H. M.Huang, A. R.Oganov, X. T.Wei, Q.Zhuet?al.. Novel topological motifs and superconductivity in Li-Cs system. Nano Lett., 23, 5012-5018(2023).

    [23] A.Bergara, F.Li, G. C.Yang, X. H.Zhang. Pressure-induced superconductivity in Li-Te electrides. Phys. Rev. B, 104, 134505(2021).

    [24] A.Bergara, G. C.Yang, X. H.Zhang, Y. P.Zhao. Superconducting Li10Se electride under pressure. J. Chem. Phys., 156, 194112(2022).

    [25] S. C.Ding, J. Y.Gao, Y.Liu, X. H.Zhang, Y. P.Zhaoet?al.. Superconducting Li11Sb2 electride at ambient pressure. J. Mater. Chem. C, 11, 17087-17092(2023).

    [26] D. F.Duan, Z.Liu, H.Song, F.Tian, Q.Zhuanget?al.. Proposed superconducting electride Li6C by sp-hybridized cage states at moderate pressures. Phys. Rev. Lett., 127, 157002(2021).

    [27] A.Bergara, H. Y.Xu, T.Yu, S. T.Zhang, Z. Y.Zhaoet?al.. Predicted pressure-induced superconducting transition in electride Li6P. Phys. Rev. Lett., 122, 097002(2019).

    [28] A.Bergara, S. C.Ding, F.Li, Y. S.Yao, X. H.Zhanget?al.. Superconductivity in Li8Au electride. Phys. Rev. B, 107, L100501(2023).

    [29] C. S.Cao, H. S.Hu, J.Li, W. H. E.Schwarz. Physical origin of chemical periodicities in the system of elements. Pure Appl. Chem., 91, 1969-1999(2019).

    [30] P.Pyykkö, P.Schwerdtfeger, O. R.Smits. The periodic table and the physics that drives it. Nat. Rev. Chem., 4, 359-380(2020).

    [31] Q.Lu, S. N.Pan, J. J.Wang, X. M.Wang, Y.Wanget?al.. Pressure stabilized lithium–aluminum compounds with both superconducting and superionic behaviors. Phys. Rev. Lett., 129, 246403(2022).

    [32] A.Bergara, S. C.Ding, Z. X.Guo, X.Li, X. H.Zhanget?al.. Superconductivity in Li8Hn electrides: The effect of interstitial anionic electrons on electron-phonon coupling. Phys. Rev. B, 109, 134505(2024).

    [33] Y. P.Feng, B.Gu, G.Su, J. Y.You. Emergent Kagome electrides. J. Am. Chem. Soc., 144, 5527-5534(2022).

    [34] X.Du, X.Li, Y. D.Wei, Z.Yang, X. H.Zhanget?al.. Au with sp3 hybridization in Li5AuP2. J. Phys. Chem. Lett., 13, 236-242(2022).

    [35] G.Yang, X.Zhang, Y.Zhao. Superconducting ternary hydrides under high pressure. Comput. Mol. Sci., 12, e1582(2022).

    [36] H.Hosono, J. J.Wang, Z. H.Wang, Q.Zhu. Ternary inorganic electrides with mixed bonding. Phys. Rev. B, 99, 064104(2019).

    [37] R. J.Needs, C. J.Pickard. Ab initio random structure searching. J. Phys. Condens. Matter, 23, 053201(2011).

    [38] J.Lv, Y. M.Ma, Y. C.Wang, L.Zhu. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B, 82, 094116(2010).

    [39] T.Cui, M. J.Hutcheon, A. M.Shipley, H.Song, Z. H.Zhanget?al.. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett., 128, 047001(2022).

    [40] Y. R.Gao, J.Jiang, L.Li, Y.Liu, W. D.Zhuet?al.. Rich proton dynamics and phase behaviours of nanoconfined ices. Nat. Phys., 20, 456-464(2024).

    [41] T.Cui, D.Li, Y.Liu, R.Wang, Z. G.Wang. Formation of twelve-fold iodine coordination at high pressure. Nat. Commun., 13, 412(2022).

    [42] J.Lv, Y. M.Ma, Y. C.Wang, L.Zhu. Predicted novel high-pressure phases of lithium. Phys. Rev. Lett., 106, 015503(2011).

    [43] M.Amsler, J. A.Flores-Livas, S.Goedecker, L.Lehtovaara, S.Pailhèset?al.. Raman activity of sp3 carbon allotropes under pressure: A density functional theory study. Phys. Rev. B, 85, 155428(2012).

    [44] L.Boeri, A. P.Drozdov, J. A.Flores-Livas, G.Profeta, A.Sannaet?al.. Interplay between structure and superconductivity: Metastable phases of phosphorus under pressure. Phys. Rev. Materials, 1, 024802(2017).

    [45] P. J.Hasnip, J. D. L.Philip, C. J.Pickard, M. J.Probert, M. D.Segallet?al.. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter, 14, 2717(2002).

    [46] J.Furthmüller, G.Kresse. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15-50(1996).

    [47] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [48] G.Henkelman, E.Sanville, W.Tang. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter, 21, 084204(2009).

    [49] V. L.Deringer, R.Dronskowski, A. L.Tchougréeff. Crystal Orbital Hamilton Population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A, 115, 5461-5466(2011).

    [50] S.Baroni, N.Bonini, M.Calandra, R.Car, P.Giannozziet?al.. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21, 395502(2009).

    [51] D.Joubert, G.Kresse. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).

    [52] P. B.Allen, R. C.Dynes. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B, 12, 905-922(1975).

    [53] X.Chen, Y.Dan, B.Suo, H.Xiao. Comment on ‘Accelerated discovery of new 8-electron half-Heusler compounds as promising energy and topological quantum materials. J. Phys. Chem. C, 124, 2247-2249(2020).

    [54] T.Bazhirov, M. L.Cohen, J.Noffsinger. Superconductivity and electron-phonon coupling in lithium at high pressures. Phys. Rev. B, 82, 184509(2010).

    [55] D. F.Duan, H. Y.Liu, Y. B.Ma, Z. J.Shao, H. Y.Yuet?al.. Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure. Phys. Rev. B, 96, 144518(2017).

    [56] Y.Bang, H.Jeon, S. Y.Liu, C. Z.Wang, S.Yiet?al.. Effect of hole doping on superconductivity in compressed CeH9 at high pressures. Phys. Rev. B, 104, L020504(2021).

    [57] W. W.Cui, J.Hao, Y. W.Li, J. M.Shi, K.Yang. Superconductivity of graphenelike hydrogen in H2He at high pressure. Phys. Rev. B, 107, 024501(2023).

    [58] T.Cui, D. F.Duan, Z.Liu, Q.Zhuang. High-temperature superconductivity in electrides dominated by hybridized p-orbital-like electride states. Phys. Rev. B, 108, L100507(2023).

    Yan Liu, Tian Cui, Da Li. Leading role of satellite interstitial electrons in superconductivity in ternary superlithide Li14CP[J]. Matter and Radiation at Extremes, 2025, 10(2): 027802
    Download Citation