• Chinese Journal of Lasers
  • Vol. 51, Issue 10, 1002316 (2024)
Zhiwei Xiong, Kai Zhang*, Tingting Liu**, and Wenhe Liao
Author Affiliations
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • show less
    DOI: 10.3788/CJL231464 Cite this Article Set citation alerts
    Zhiwei Xiong, Kai Zhang, Tingting Liu, Wenhe Liao. Effects of Laser Power on Molten Pool Morphology, Microstructure, and Mechanical Properties of Al2O3‐ZrO2 Eutectic Ceramics Shaped by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2024, 51(10): 1002316 Copy Citation Text show less
    References

    [1] Waku Y, Nakagawa N, Wakamoto T et al. A ductile ceramic eutectic composite with high strength at 1, 873 K[J]. Nature, 389, 49-52(1997).

    [2] Fan Z Q, Yin Y, Tan Q Y et al. Unveiling solidification mode transition and crystallographic characteristics in laser 3D-printed Al2O3-ZrO2 eutectic ceramics[J]. Scripta Materialia, 210, 114433(2022).

    [3] Wang Z G, Ouyang J H, Wang Y J et al. Microstructural characterization of nanostructured Al2O3-ZrO2 eutectic layer by laser rapid solidification method[J]. Applied Surface Science, 476, 335-341(2019).

    [4] Wu D J, Yu X X, Zhao Z Y et al. One-step additive manufacturing of TiCp reinforced Al2O3–ZrO2 eutectic ceramics composites by laser directed energy deposition[J]. Ceramics International, 49, 12758-12771(2023).

    [5] Zheng T Q, Wang W, Sun J X et al. Development and evaluation of Al2O3-ZrO2 composite processed by digital light 3D printing[J]. Ceramics International, 46, 8682-8688(2020).

    [6] Banik S R, Iqbal I M, Nath R et al. State of the art on zirconia toughened alumina cutting tools[J]. Materials Today: Proceedings, 18, 2632-2641(2019).

    [7] Tarì G. Gelcasting ceramics: a review[J]. American Ceramic Society Bulletin, 82, 43-46(2003).

    [8] Li N, Huang S, Zhang G D et al. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science & Technology, 35, 242-269(2019).

    [9] Olhero S M, Torres P M C, Mesquita-Guimarães J et al. Conventional versus additive manufacturing in the structural performance of dense alumina-zirconia ceramics: 20 years of research, challenges and future perspectives[J]. Journal of Manufacturing Processes, 77, 838-879(2022).

    [10] Liu X Y, Zou B, Xing H Y et al. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing[J]. Ceramics International, 46, 937-944(2020).

    [11] Pandit P P. Inkjet printing of graphene-reinforced zirconia composite: microstructures and properties[D](2023).

    [12] Pfeiffer S, Florio K, Puccio D et al. Direct laser additive manufacturing of high performance oxide ceramics: a state-of-the-art review[J]. Journal of the European Ceramic Society, 41, 6087-6114(2021).

    [13] Wu D J, Shi J, Niu F Y et al. Direct additive manufacturing of melt growth Al2O3-ZrO2 functionally graded ceramics by laser directed energy deposition[J]. Journal of the European Ceramic Society, 42, 2957-2973(2022).

    [14] Shen Z L, Su H J, Yu M H et al. Large-size complex-structure ternary eutectic ceramic fabricated using laser powder bed fusion assisted with finite element analysis[J]. Additive Manufacturing, 72, 103627(2023).

    [15] Shen Z L, Su H J, Liu H F et al. Directly fabricated Al2O3/GdAlO3 eutectic ceramic with large smooth surface by selective laser melting: rapid solidification behavior and thermal field simulation[J]. Journal of the European Ceramic Society, 42, 1088-1101(2022).

    [16] Zhang K, Liu T T, Liao W et al. Simulation of the thermal behavior and analysis of solidification process during selective laser melting of alumina[D], 1808-1820(2018).

    [17] Zheng Y, Zhang K, Liu T T et al. Cracks of alumina ceramics by selective laser melting[J]. Ceramics International, 45, 175-184(2019).

    [18] Liu H F, Su H J, Shen Z L et al. Insights into high thermal stability of laser additively manufactured Al2O3/GdAlO3/ZrO2 eutectic ceramics under high temperatures[J]. Additive Manufacturing, 48, 102425(2021).

    [19] Ma R Q, Zhang K, Wei H L et al. Formation mechanism of surface microstructure in selective laser melting of alumina ceramic based on numerical simulation[J]. Chinese Journal of Lasers, 46, 0202002(2019).

    [20] Xiong Z W, Zhang K, Liu T T et al. Role of scanning speed on the microstructure and mechanical properties of additively manufactured Al2O3-ZrO2[J]. Journal of the American Ceramic Society, 106, 7760-7775(2023).

    [21] Hu Y B, Ning F D, Cong W L et al. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: effects on crack suppression, microstructure, and mechanical properties[J]. Ceramics International, 44, 2752-2760(2018).

    [22] Zhang K, Liu T T, Zhang C D et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J]. Chinese Journal of Lasers, 42, 0903007(2015).

    [23] Xiong Z W, Zhang K, Zhu Z G et al. Effect of laser focus shift on the forming quality, microstructure and mechanical properties of additively manufactured Al2O3-ZrO2 eutectic ceramics[J]. Ceramics International, 49, 35948-35962(2023).

    [24] Gates-Rector S, Blanton T. The powder diffraction file: a quality materials characterization database[J]. Powder Diffraction, 34, 352-360(2019).

    [25] Thorvaldsen A. The intercept method: 2. determination of spatial grain size[J]. Acta Materialia, 45, 595-600(1997).

    [26] Quinn G D, Tandon R, Wereszczak A, Lara-Curzio E et al. Fracture toughness of ceramics by the vickers indentation crack length method: a critical review[M]. Mechanical properties and performance of engineering ceramics II: ceramic engineering and science proceedings, 27, 45-62(2008).

    [27] Kondo T, Muta H, Kurosaki K et al. Density and viscosity of liquid ZrO2 measured by aerodynamic levitation technique[J]. Heliyon, 5, e02049(2019).

    [28] Kim W K, Shim J H, Kaviany M. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models[J]. Journal of Nuclear Materials, 491, 126-137(2017).

    [29] Mills K C[M]. Recommended values of thermophysical properties for selected commercial alloys(2002).

    [30] Yin Q Y, Wei H L, Zhang C C et al. Effect prediction of stress and deformation for laser additive manufacturing of characteristic structure based on inherent strain method[J]. Chinese Journal of Lasers, 49, 1402207(2022).

    [31] Qiu Y D, Wu J M, Chen A N et al. Balling phenomenon and cracks in alumina ceramics prepared by direct selective laser melting assisted with pressure treatment[J]. Ceramics International, 46, 13854-13861(2020).

    [32] Song C H, Fu H X, Yan Z W et al. Internal defects and control methods of laser powder bed fusion forming[J]. Chinese Journal of Lasers, 49, 1402801(2022).

    [33] Lin S G, Guo X X, Chen H et al. Microstructure evolution of ZrO2 particle during manufacture of ZrO2p thermal barrier coating by laser melt injection[J]. Chinese Journal of Lasers, 46, 0802004(2019).

    [34] Ashby M F, Easterling K E. A first report on diagrams for grain growth in welds[J]. Acta Metallurgica, 30, 1969-1978(1982).

    [35] Lü X R, Liu T T, Liao W H et al. Solidification crack elimination and quality control of high-strength aluminum alloy 7075 fabricated using laser powder bed fusion[J]. Chinese Journal of Lasers, 49, 1402209(2022).

    Zhiwei Xiong, Kai Zhang, Tingting Liu, Wenhe Liao. Effects of Laser Power on Molten Pool Morphology, Microstructure, and Mechanical Properties of Al2O3‐ZrO2 Eutectic Ceramics Shaped by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2024, 51(10): 1002316
    Download Citation