• Chinese Optics Letters
  • Vol. 22, Issue 6, 060002 (2024)
Ze-Hao Wang1,2, Tong-Tian Weng1,2, Xiang-Dong Chen1,2,3, Li Zhao4, and Fang-Wen Sun1,2,3,*
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • 4Anhui Golden-Shield 3D Technology Co., Ltd., Hefei 230011, China
  • show less
    DOI: 10.3788/COL202422.060002 Cite this Article Set citation alerts
    Ze-Hao Wang, Tong-Tian Weng, Xiang-Dong Chen, Li Zhao, Fang-Wen Sun, "SSL Depth: self-supervised learning enables 16× speedup in confocal microscopy-based 3D surface imaging [Invited]," Chin. Opt. Lett. 22, 060002 (2024) Copy Citation Text show less
    References

    [1] K. Creath. V phase-measurement interferometry techniques. Prog. Opt., 26, 349(1988).

    [2] P. Hariharan. Basics of Interferometry(2010).

    [3] C. A. Sciammarella. The moiré method–a review: the main developments in the area of moiré as a tool to measure displacements, contours, slopes and strains are reviewed and some typical applications are shown. Exp. Mech., 22, 418(1982).

    [4] D. Post, B. Han, P. Ifju. High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials(2012).

    [5] U. Schnars, C. Falldorf, J. Watson et al. Digital holography and wavefront sensing. Principles, Techniques and Applications(2015).

    [6] E. Cuche, F. Bevilacqua, C. Depeursinge. Digital holography for quantitative phase-contrast imaging. Opt. Lett., 24, 291(1999).

    [7] L. Xu, X. Peng, J. Miao et al. Studies of digital microscopic holography with applications to microstructure testing. Appl. Opt., 40, 5046(2001).

    [8] P. Picart, J. Leval, D. Mounier et al. Time-averaged digital holography. Opt. Lett., 28, 1900(2003).

    [9] V. R. Singh, J. Miao, Z. Wang et al. Dynamic characterization of mems diaphragm using time averaged in-line digital holography. Opt. Commun., 280, 285(2007).

    [10] S. S. Gorthi, P. Rastogi. Fringe projection techniques: whither we are?. Opt. Lasers Eng., 48, 133(2010).

    [11] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics, 3, 128(2011).

    [12] M. C. Knauer, J. Kaminski, G. Hausler. Phase measuring deflectometry: a new approach to measure specular free-form surfaces. Optical Metrology in Production Engineering, 366(2004).

    [13] L. Huang, M. Idir, C. Zuo et al. Review of phase measuring deflectometry. Opt. Lasers Eng., 107, 247(2018).

    [14] M. Minsky. Memoir on inventing the confocal scanning microscope. Scanning, 10, 128(1988).

    [15] D. K. Hamilton, T. Wilson. Surface profile measurement using the confocal microscope. J. Appl. Phys., 53, 5320(1982).

    [16] H.-J. Jordan, M. Wegner, H. Tiziani. Highly accurate non-contact characterization of engineering surfaces using confocal microscopy. Meas. Sci. Technol., 9, 1142(1998).

    [17] R. Artigas. Imaging confocal microscopy. Optical Measurement of Surface Topography, 237(2011).

    [18] J. Liu, J. Tan, T. Liu et al. Axial performance parameters developed for analytical design of center shaded filter in high aperture focusing system. Opt. Commun., 283, 4190(2010).

    [19] J. Tan, C. Liu, J. Liu et al. Sinc2 fitting for height extraction in confocal scanning. Meas. Sci. Technol., 27, 025006(2015).

    [20] C. Zuo, J. Qian, S. Feng et al. Deep learning in optical metrology: a review. Light Sci. Appl., 11, 39(2022).

    [21] C. Belthangady, L. A. Royer. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods, 16, 1215(2019).

    [22] A. Vaswani, N. Shazeer, N. Parmar et al. Attention is all you need. Advances in Neural Information Processing Systems, 1(2017).

    [23] A. Dosovitskiy, L. Beyer, A. Kolesnikov et al. An image is worth 16 × 16 words: transformers for image recognition at scale(2020).

    [24] Z.-H. Wang, L.-K. Shan, T.-T. Weng et al. Learning the imaging mechanism directly from optical microscopy observations. Photonics Res., 12, 7(2024).

    [25] C. Feichtenhofer, Y. Li, K. He et al. Masked autoencoders as spatiotemporal learners. Adv. Neural Inf. Process., 35, 35946(2022).

    [26] A. Radford, J. W. Kim, C. Hallacy et al. Learning transferable visual models from natural language supervision. International Conference on Machine Learning, 8748(2021).

    [27] Z. Chen, Y. Duan, W. Wang et al. Vision transformer adapter for dense predictions(2022).

    [28] L. Newton, A. Thanki, C. Bermudez et al. Optimisation of imaging confocal microscopy for topography measurements of metal additive surfaces. Metrology, 3, 186(2023).

    [29] I. Loshchilov, F. Hutter. Decoupled weight decay regularization(2017).

    [30] J. Bradbury, R. Frostig, P. Hawkins et al. JAX: composable transformations of Python+NumPy programs(2018).

    Data from CrossRef

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    [1] Shensheng Han.

    Ze-Hao Wang, Tong-Tian Weng, Xiang-Dong Chen, Li Zhao, Fang-Wen Sun, "SSL Depth: self-supervised learning enables 16× speedup in confocal microscopy-based 3D surface imaging [Invited]," Chin. Opt. Lett. 22, 060002 (2024)
    Download Citation