• Photonics Research
  • Vol. 11, Issue 11, A88 (2023)
Anton V. Saetchnikov1、*, Elina A. Tcherniavskaia2, Vladimir A. Saetchnikov3, and Andreas Ostendorf1
Author Affiliations
  • 1Chair of Applied Laser Technologies, Ruhr University Bochum, 44801 Bochum, Germany
  • 2Physics Department, Belarusian State University, 220030 Minsk, Belarus
  • 3Radio Physics Department, Belarusian State University, 220064 Minsk, Belarus
  • show less
    DOI: 10.1364/PRJ.496737 Cite this Article Set citation alerts
    Anton V. Saetchnikov, Elina A. Tcherniavskaia, Vladimir A. Saetchnikov, Andreas Ostendorf, "Detection of per- and polyfluoroalkyl water contaminants with a multiplexed 4D microcavities sensor," Photonics Res. 11, A88 (2023) Copy Citation Text show less
    References

    [1] S. F. Nakayama, M. Yoshikane, Y. Onoda, Y. Nishihama, M. Iwai-Shimada, M. Takagi, Y. Kobayashi, T. Isobe. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. TRAC Trends Anal. Chem., 121, 115410(2019).

    [2] H. Fiedler, T. Kennedy, B. J. Henry. A critical review of a recommended analytical and classification approach for organic fluorinated compounds with an emphasis on per- and polyfluoroalkyl substances. Integr. Environ. Assess. Manage., 17, 331-351(2021).

    [3] M. Ateia, A. Maroli, N. Tharayil, T. Karanfil. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: a review. Chemosphere, 220, 866-882(2019).

    [4] B. F. Scott, C. A. Moody, C. Spencer, J. M. Small, D. C. G. Muir, S. A. Mabury. Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC–MS and analysis of PFOA from large-volume samples. Environ. Sci. Technol., 40, 6405-6410(2006).

    [5] H. Ryu, B. Li, S. de Guise, J. McCutcheon, Y. Lei. Recent progress in the detection of emerging contaminants PFASs. J. Hazard. Mater., 408, 124437(2021).

    [6] N. Cennamo, G. D’Agostino, G. Porto, A. Biasiolo, C. Perri, F. Arcadio, L. Zeni. A molecularly imprinted polymer on a plasmonic plastic optical fiber to detect perfluorinated compounds in water. Sensors, 18, 1836(2018).

    [7] N. Cennamo, L. Zeni, P. Tortora, M. E. Regonesi, A. Giusti, M. Staiano, S. D’Auria, A. Varriale. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment. Talanta, 178, 955-961(2018).

    [8] R. Pitruzzella, F. Arcadio, C. Perri, D. Del Prete, G. Porto, L. Zeni, N. Cennamo. Ultra-low detection of perfluorooctanoic acid using a novel plasmonic sensing approach combined with molecularly imprinted polymers. Chemosensors, 11, 211(2023).

    [9] G. Moro, F. Chiavaioli, S. Liberi, P. Zubiate, I. Del Villar, A. Angelini, K. de Wael, F. Baldini, L. M. Moretto, A. Giannetti. Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance. Results Opt., 5, 100123(2021).

    [10] F. Faiz, G. Baxter, S. Collins, F. Sidiroglou, M. Cran. Polyvinylidene fluoride coated optical fibre for detecting perfluorinated chemicals. Sens. Actuators B Chem., 312, 128006(2020).

    [11] V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 137, 393-397(1989).

    [12] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [13] X. Jiang, A. J. Qavi, S. H. Huang, L. Yang. Whispering-gallery sensors. Matter, 3, 371-392(2020).

    [14] M. R. Foreman, J. D. Swaim, F. Vollmer. Whispering gallery mode sensors. Adv. Opt. Photonics, 7, 168-240(2015).

    [15] L. Cai, J. Pan, Y. Zhao, J. Wang, S. Xiao. Whispering gallery mode optical microresonators: structures and sensing applications. Phys. Status Solidi A, 217, 1900825(2020).

    [16] D. Yu, M. Humar, K. Meserve, R. C. Bailey, S. N. Chormaic, F. Vollmer. Whispering-gallery-mode sensors for biological and physical sensing. Nat. Rev. Methods Primers, 1, 83(2021).

    [17] B. Özel, R. Nett, T. Weigel, G. Schweiger, A. Ostendorf. Temperature sensing by using whispering gallery modes with hollow core fibers. Meas. Sci. Technol., 21, 094015(2010).

    [18] J. Su, A. F. Goldberg, B. M. Stoltz. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl., 5, e16001(2016).

    [19] M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, A. Kiraz. Integrated humidity sensor based on SU-8 polymer microdisk microresonator. Sens. Actuators B Chem., 242, 1115-1120(2017).

    [20] A. V. Saetchnikov, E. A. Tcherniavskaia, V. V. Skakun, V. A. Saetchnikov, A. Ostendorf. Reusable dispersed resonators-based biochemical sensor for parallel probing. IEEE Sens. J., 19, 7644-7651(2019).

    [21] C. Lemieux-Leduc, R. Guertin, M.-A. Bianki, Y.-A. Peter. All-polymer whispering gallery mode resonators for gas sensing. Opt. Express, 29, 8685-8697(2021).

    [22] J. Liao, L. Yang. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light Sci. Appl., 10, 32(2021).

    [23] A. V. Saetchnikov, E. A. Tcherniavskaia, V. A. Saetchnikov, A. Ostendorf. Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. Opto-Electron. Adv., 3, 200048(2020).

    [24] A. V. Saetchnikov, E. A. Tcherniavskaia, V. A. Saetchnikov, A. Ostendorf. Intelligent optical microresonator imaging sensor for early stage classification of dynamical variations. Adv. Photonics Res., 2, 2100242(2021).

    [25] F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett., 80, 4057-4059(2002).

    [26] Y. Chen, Y. Yin, L. Ma, O. G. Schmidt. Recent progress on optoplasmonic whispering-gallery-mode microcavities. Adv. Opt. Mater., 9, 2100143(2021).

    [27] M. P. Serrano, S. Subramanian, C. von Bilderling, M. Rafti, F. Vollmer. ‘Grafting-to’ covalent binding of plasmonic nanoparticles onto silica WGM microresonators: mechanically robust single-molecule sensors and determination of activation energies from single-particle events. Sensors, 23, 3455(2023).

    [28] T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, A. François. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev., 11, 1600265(2017).

    [29] N. Toropov, G. Cabello, M. P. Serrano, R. R. Gutha, M. Rafti, F. Vollmer. Review of biosensing with whispering-gallery mode lasers. Light Sci. Appl., 10, 42(2021).

    [30] W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [31] A. V. Saetchnikov, E. A. Tcherniavskaia, V. A. Saetchnikov, A. Ostendorf. A laser written 4D optical microcavity for advanced biochemical sensing in aqueous environment. J. Lightwave Technol., 38, 2530-2538(2020).

    [32] Y. S. Lui, W. T. Sow, L. P. Tan, Y. Wu, Y. Lai, H. Li. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater., 92, 19-36(2019).

    [33] A. Mitchell, U. Lafont, M. Hołyńska, C. Semprimoschnig. Additive manufacturing — a review of 4D printing and future applications. Addit. Manuf., 24, 606-626(2018).

    [34] A. Ovsianikov, A. Ostendorf, B. N. Chichkov. Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci., 253, 6599-6602(2007).

    [35] Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, L. Wu. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater., 7, 1801433(2019).

    [36] I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, M. Farsari. Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano, 6, 2302-2311(2012).

    [37] M. L. Gorodetsky, V. S. Ilchenko. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B, 16, 147-154(1999).

    [38] A. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, A. Ostendorf. Effect of a thin reflective film between substrate and photoresin on two-photon polymerization. Addit. Manuf., 24, 658-666(2018).

    [39] M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep., 533, 1-31(2013).

    [40] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17, 1051-1057(2000).

    [41] M. Ateia, A. Alsbaiee, T. Karanfil, W. Dichtel. Efficient PFAS removal by amine-functionalized sorbents: critical review of the current literature. Environ. Sci. Technol. Lett., 6, 688-695(2019).

    [42] Z. Du, S. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, G. Yu. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents–a review. J. Hazard. Mater., 274, 443-454(2014).

    [43] E. Gagliano, M. Sgroi, P. P. Falciglia, F. G. A. Vagliasindi, P. Roccaro. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res., 171, 115381(2020).

    [44] Q. Yu, R. Zhang, S. Deng, J. Huang, G. Yu. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Res., 43, 1150-1158(2009).

    Anton V. Saetchnikov, Elina A. Tcherniavskaia, Vladimir A. Saetchnikov, Andreas Ostendorf, "Detection of per- and polyfluoroalkyl water contaminants with a multiplexed 4D microcavities sensor," Photonics Res. 11, A88 (2023)
    Download Citation