• Chinese Optics Letters
  • Vol. 21, Issue 10, 101201 (2023)
Ju Wang, Ziheng Cai, Jinlong Yu*, Hao Luo, and Chuang Ma
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/COL202321.101201 Cite this Article Set citation alerts
    Ju Wang, Ziheng Cai, Jinlong Yu, Hao Luo, Chuang Ma, "Nanometer-scale displacement measurement based on an orthogonal dual Michelson interferometer," Chin. Opt. Lett. 21, 101201 (2023) Copy Citation Text show less
    References

    [1] H. Liang, Y. Sun, Z. Huang, C. Jiang, Z. Zhang, L. Kan. Reconstruction of fabry–perot cavity interferometer nanometer micro-displacement based on hilbert transform. Chin. Opt. Lett., 19, 091202(2021).

    [2] K. Kurokawa, S. Makita, Y.-J. Hong, Y. Yasuno. Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography. Biomed Opt. Express, 6, 170(2014).

    [3] S. Muñoz Solís, F. M. Santoyo, M. del Socorro Hernández-Montes. 3D displacement measurements of the tympanic membrane with digital holographic interferometry. Opt. Express, 20, 5613(2012).

    [4] Q. Wang, S. Yan, Q. Xu, S. Zhang, L. Tu. A universal high-sensitivity area-variation capacitive displacement transducer (CDT) based on fringe effect. IEEE Access, 7, 153650(2019).

    [5] Y. Ye, C. Zhang, C. He, X. Wang, J. Deng. A review on applications of capacitive displacement sensing for capacitive proximity sensor. IEEE Access, 8, 45325(2020).

    [6] S. Marick, S. C. Bera. Study of a modified differential inductance type displacement transducer. International Conference on Electronics(2014).

    [7] Y. Wu, T. Huang. Design of high precision capacitance displacement sensor. IEEE Advanced Information Technology, Electronic and Automation Control Conference(2018).

    [8] D. Guo, L. Shi, Y. Yu, X. Wei, W. Ming. Micro-displacement reconstruction using a laser self-mixing grating interferometer with multiple-diffraction. Opt. Express, 25, 31394(2017).

    [9] M. Pisani. Multiple reflection Michelson interferometer with picometer resolution. Opt. Express, 16, 21558(2008).

    [10] J. N. Dash, R. Jha, J. Villatoro, S. Dass. Nano-displacement sensor based on photonic crystal fiber modal interferometer. Opt. Lett., 40, 467(2015).

    [11] K. Tian, J. Yu, X. Wang, H. Zhao, D. Liu, E. Lewis, G. Farrell, P. Wang. Miniature Fabry-Perot interferometer based on a movable microsphere reflector. Opt. Lett., 45, 787(2020).

    [12] E. Olivier, E. Janine. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams. Opt. Lett., 42, 354(2017).

    [13] W. Ye, M. Zhang, Y. Zhu, L. Wang, C. Hu. Tanslational displacement computational algorithm of the grating interferometer without geometric error for the wafer stage in a photolithography scanner. Opt. Express, 26, 34734(2018).

    [14] Y. Yin, Z. Liu, S. Jiang, W. Wang, H. Yu, W. Li, . Grating-based 2D displacement measurement with quadruple optical subdivision of a single incident beam. Opt. Express, 29, 24169(2021).

    [15] M. Li, X. Xiang, C. Zhou, C. Wei, W. Jia, C. Xiang, Y. Lu, S. Zhu. Two-dimensional grating fabrication based on ultra-precision laser direct writing system. Acta Optica Sinica, 39, 0905001(2019).

    [16] X. Chu, H. Lu, J. Cao. Research on direction recognizing and subdividing method for moiré (interference) fringes. Chin. Opt. Lett., 1, 692(2003).

    [17] X. Suan, C. Luc, T. Suat. Phase control of ellipsometric interferometer for nanometric positioning system. Sci. China Inf. Sci., 54, 3424(2011).

    [18] S. Xu, L. Chassagne, S. Topcu, L. Chen, J. Sun, T. Yan. Polarimetric interferometer for measuring nonlinearity error of heterodyne interferometric displacement system. Chin. Opt. Lett., 11, 061201(2013).

    [19] M. Zhu, H. Wei, S. Zhao, X. Wu, Y. Li. Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry–Perot interferometer. Appl. Opt., 54, 4594(2015).

    [20] B. Qi, D. E. Winder, Y. Liu. Quadrature phase-shifted optical demodulator for low-coherence fiber-optic Fabry-Perot interferometric sensors. Opt. Express, 27, 7319(2019).

    [21] H. Fu, J. Tan, P. Hu, Z. Fan. Beam combination setup for dual-frequency laser with orthogonal linear polarization. Chin. Opt. Lett., 13, 101201(2015).

    [22] Z. Zhang, C. Jiang, F. Wang, Z. Huang, C. Li. Quadrature phase detection based on an extrinsic Fabry-Pérot interferometer for vibration measurement. Opt. Express, 28, 32572(2020).

    [23] J. Cui, Z. He, Y. Jiu, J. Tan, T. Sun. Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity. Appl. Opt., 55, 7086(2016).

    [24] T. Trottenberg, H. Kersten. Measurement of forces exerted by low-temperature plasmas on a plane surface. Plasma Sources Sci. Technol., 26, 055011(2017).

    [25] M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, S. D. Huber. Observation of a phononic quadrupole topological insulator. Nature, 555, 342(2018).

    Data from CrossRef

    [1] Daniel Hofstetter, Hans Beck, David P. Bour.

    [1] Daniel Hofstetter, Hans Beck, David P. Bour.

    [1] Daniel Hofstetter, Hans Beck, David P. Bour.

    [1] Daniel Hofstetter, Hans Beck, David P. Bour.

    [1] Daniel Hofstetter, Hans Beck, David P. Bour.

    [1] Daniel Hofstetter, Hans Beck, David P. Bour.

    [1] Daniel Hofstetter, Hans Beck, David P. Bour.

    Ju Wang, Ziheng Cai, Jinlong Yu, Hao Luo, Chuang Ma, "Nanometer-scale displacement measurement based on an orthogonal dual Michelson interferometer," Chin. Opt. Lett. 21, 101201 (2023)
    Download Citation