• Optoelectronics Letters
  • Vol. 18, Issue 6, 354 (2022)
Di ZHU1、2, Chunhua LI1、2, Zhongkun GAO1、3, Xiaodong SUN1、2、*, and Hui GAO4
Author Affiliations
  • 1Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin 300387, China
  • 2School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
  • 3School of Life Science, Tiangong University, Tianjin 300387, China
  • 4School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
  • show less
    DOI: 10.1007/s11801-022-1182-y Cite this Article
    ZHU Di, LI Chunhua, GAO Zhongkun, SUN Xiaodong, GAO Hui. Nitrogen air lasing induced by multiple filaments array[J]. Optoelectronics Letters, 2022, 18(6): 354 Copy Citation Text show less
    References

    [1] CHIN S L, HOSSEINI S A, LIU W, et al. The propagation of powerful femtosecond laser pulses in optical media:physics, applications, and new challenges[J]. Canadian journal of physics, 2005, 83(9):863-905.

    [2] CHIN S L, THéBERGE F, LIU W. Filamentation nonlinear optics[J]. Applied physics B, 2007, 86(3):477-483.

    [3] COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media[J]. Physics reports, 2007, 441(2-4):47-189.

    [4] BERGé L, SKUPIN S, NUTER R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on progress in physics, 2007, 70(10):1633-1713.

    [5] KASPARIAN J, WOLF J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics express, 2008, 16(1):466-493.

    [6] BéJOT P, KASPARIAN J, HENIN S, et al. Higherorder Kerr terms allow ionization-free filamentation in gases[J]. Physical review letters, 2010, 104(10): 103903.

    [7] BéJOT P, HERTZ E, KASPARIAN J, et al. Transition from plasma-driven to Kerr-driven laser filamentation[J]. Physical review letters, 2011, 106(24):243902.

    [8] XI T T, LU X, ZHANG J. Interaction of light filaments generated by femtosecond laser pulses in air[J]. Physical review letters, 2006, 96(2):025003.

    [9] MA Y Y, LU X, XI T T, et al. Filamentation of interacting femtosecond laser pulses in air[J]. Applied physics B, 2008, 93(2):463-468.

    [10] SHIM B, SCHRAUTH S E, HENSLEY C J, et al. Controlled interactions of femtosecond light filaments in air[J]. Physical review A, 2010, 81(6):061803.

    [11] TZORTZAKIS S, BERGé L, COUAIRON A, et al. Breakup and fusion of self-guided femtosecond light pulses in air[J]. Physical review letters, 2001, 86(24): 5470-5473.

    [12] GAO H, CHU W, YU G, et al. Femtosecond laser filament array generated with step phase plate in air[J]. Optics express, 2013, 21(4):4612-4622.

    [13] LI H, LIU J, FENG Y, et al. Temporal and phase measurements of ultraviolet femtosecond pulses at 200 nm by molecular alignment based frequency resolved optical gating[J]. Applied physics letters, 2011, 99(1): 011108.

    [14] WANG T J, DAIGLE J F, YUAN S, et al. Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air[J]. Physical review A, 2011, 83(5):053801.

    [15] LI M, LI W, SHI Y, et al. Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses[J]. Applied physics letters, 2012, 101(16): 161104.

    [16] XU H, L?TSTEDT E, IWASAKI A, et al. Sub-10-fs population inversion in N2 + in air lasing through multiple state coupling[J]. Nature communications, 2015, 6:8347.

    [17] YAO J, JIANG S, CHU W, et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields[J]. Physical review letters, 2016, 116(14):143007.

    [18] MITRYUKOVSKIY S, LIU Y, DING P, et al. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses[J]. Optics express, 2014, 22(11):12750-12759.

    [19] DOGARIU A, MICHAEL J B, SCULLY M O, et al. High-gain backward lasing in air[J]. Science, 2011,331(6016):442-445.

    [20] LUO Q, LIU W, CHIN S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied physics B, 2003, 76(3):337-340.

    [21] YAO J, ZENG B, XU H, et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical review A, 2011, 84(5):051802.

    [22] YAO J, LI G, JING C, et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses[J]. New journal of physics, 2013, 15(2):023046.

    [23] BRITTON M, LAFERRIERE P, KO D H, et al. Testing the role of recollision in N2 + air lasing[J]. Physical review letters, 2018, 120(13):133208.

    [24] XU H L, AZARM A, BERNHARDT J, et al. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air[J]. Chemical physics, 2009, 360(1-3):171-175.

    [25] XU H L, AZARM A, CHIN S L. Controlling fluorescence from N2 inside femtosecond laser filaments in air by two-color laser pulses[J]. Applied physics letters, 2011, 98(14):141111.

    [26] BRAUN A, KORN G, LIU X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics letters, 1995, 20(1):73-75.

    [27] LIU W, PETIT S, BECKER A, et al. Intensity clamping of a femtosecond laser pulse in condensed matter[J]. Optics communications, 2002, 202(1-3):189-197.

    [28] SKUPIN S, BERGé L, PESCHEL U, et al. Filamentation of femtosecond light pulses in the air:turbulent cells versus long-range clusters[J]. Physical review E, 2004, 70(4):046602.

    [29] TALEBPOUR A, YANG J, CHIN S L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse[J]. Optics communications, 1999, 163(1-3):29-32.

    [30] LIU W, CHIN S L. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecondlaser- pulse filamentation[J]. Physical review A, 2007, 76(1):013826.

    ZHU Di, LI Chunhua, GAO Zhongkun, SUN Xiaodong, GAO Hui. Nitrogen air lasing induced by multiple filaments array[J]. Optoelectronics Letters, 2022, 18(6): 354
    Download Citation