• Acta Photonica Sinica
  • Vol. 46, Issue 11, 1128003 (2017)
YE Wei-lin1、*, HE Xun1, MENG Yong-xian1, ZHENG Zhi-dan1, and ZHENG Chuan-tao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20174611.1128003 Cite this Article
    YE Wei-lin, HE Xun, MENG Yong-xian, ZHENG Zhi-dan, ZHENG Chuan-tao. Highly-Accuract Mid-Infrared Atmospheric Methane Sensor System[J]. Acta Photonica Sinica, 2017, 46(11): 1128003 Copy Citation Text show less
    References

    [1] BAMBERGER I, STIEGER J, BUCHMANN N, et al. Spatial variability of methane: Attributing atmospheric concentrations to emissions[J]. Environmental Pollution, 2014, 190: 65-74.

    [2] SMITH F A, ELLIOTT S, BLAKE D R, et al. Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico[J]. Environmental Science & Policy, 2002, 5(6): 449-461.

    [3] SIMPSON I J, ROWLAND F S, MEINARDI S, et al. Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane[J]. Geophysical Research Letters, 2006, 33(22): L22808.

    [4] XIAO Y, LOGAN J A, JACOB D J, et al. Global budget of ethane and regional constraints on U.S. sources[J]. Journal of Geophysical Research, 2008, 113(D21): D21306.

    [5] ETIOPE G, CICCIOLI P. Earth′s degassing: a missing ethane and propane source[J]. Science, 2009, 323(5913): 478.

    [6] PAREDI P, KHARITONOV S A, BARNES P J. Elevation of exhaled ethane concentration in asthma[J]. American Journal of Respiratory and Critical Care Medicine, 2000, 162(4): 1450-1454.

    [7] PANG Tao, WANG Yu, XIA Hua, et al. Full scale methane sensor based on TDLAS technology[J]. Acta Optica Sinica, 2016, 45(9): 0912003

    [8] LANCASTER D G, WEIDNER R, RICHTER D, et al. Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3[J]. Optics Communications, 2000, 175(4-6): 461-468.

    [9] FISCHER C, SIGRIST M W. Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system[J]. Applied Physics B, 2002, 75(2-3): 305-310.

    [10] PETROV K P, WALTMAN S, DLUGOKENCKY E J, et al. Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN[J]. Applied Physics B, 1997, 4(5): 567-572.

    [11] SILVER J A. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods[J]. Applied Optics, 1992, 31(6): 707-717.

    [12] ZENG Yi-shuai, YANG You-liang, MA Cui-hong. Design of the detection system of multi component gas composition in dust environment[J]. Chinese Journal of Luminescence, 2016, 37(7): 859-865.

    [13] WERLE P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochim Acta A, 1998, 54(2): 197-236.

    [14] SCHILT S, THEVENAZ L, ROBERT P. Wavelength modulation spectroscopy: combined frequency and intensity laser modulation[J]. Applied Optics, 2003, 42(33): 6728-6738.

    [15] LIU Hui-fang, LI Bin, HE Qi-xin, et al. Development of a digital orthogonal lock-in amplifier and its application in methane detection[J]. Acta Optica Sinica, 2016, 45(4): 0423004.

    [16] LIU K, LIU T, JIANG J, et al. Investigation of wavelength modulation and wavelength sweep techniques in intracavity fiber laser for gas detection[J]. Journal of Lightwave Technology, 2011, 29(1): 15-21.

    [17] MEI L, SVANBERG S. Wavelength modulation spectroscopy-digital detection of gas absorption harmonics based on Fourier analysis[J]. Applied Optics, 2015, 54(9): 2234-2243.

    [18] REID J, BRIE D. Second harmonic detection with tunable diode lasers-comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3): 203-210.

    YE Wei-lin, HE Xun, MENG Yong-xian, ZHENG Zhi-dan, ZHENG Chuan-tao. Highly-Accuract Mid-Infrared Atmospheric Methane Sensor System[J]. Acta Photonica Sinica, 2017, 46(11): 1128003
    Download Citation