• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 7, 070201 (2024)
Xue HAI1,2,3, Feifei ZHANG1,2, Ali WEN1, Yaru YIN3,4..., Cuilan REN1,* and Ping HUAI1,3,4,5,**|Show fewer author(s)
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
  • 4(Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE), ShanghaiTech University, Shanghai 201210, China)
  • 5Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.070201 Cite this Article
    Xue HAI, Feifei ZHANG, Ali WEN, Yaru YIN, Cuilan REN, Ping HUAI. Numerical analysis of X-ray free-electron laser interaction with metal ruthenium using the two-temperature model[J]. NUCLEAR TECHNIQUES, 2024, 47(7): 070201 Copy Citation Text show less
    References

    [1] Gaudin J, Medvedev N, Chalupský J et al. Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse[J]. Physical Review B, 88, 060101(2013).

    [2] van Thor J J, Madsen A. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography[J]. Structural Dynamics, 2, 014102(2015).

    [3] David C, Karvinen P, Sikorski M et al. Following the dynamics of matter with femtosecond precision using the X-ray streaking method[J]. Scientific Reports, 5, 7644(2015).

    [4] Zastrau U, Burian T, Chalupsky J et al. XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH[J]. Laser and Particle Beams, 30, 45-56(2012).

    [5] ZHANG Ximing, GUO Zhi, MENG Xiangyu et al. Research on the influence of slope error on free-electron laser focusing spot[J]. Nuclear Techniques, 43, 060101(2020).

    [6] Yamauchi K, Yamamura K, Mimura H et al. Wave-optical evaluation of interference fringes and wavefront phase in a hard-X-ray beam totally reflected by mirror optics[J]. Applied Optics, 44, 6927-6932(2005).

    [7] Boutet S, Williams G J. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS)[J]. New Journal of Physics, 12, 035024(2010).

    [8] Liang M N, Williams G J, Messerschmidt M et al. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source[J]. Journal of Synchrotron Radiation, 22, 514-519(2015).

    [9] Koyama T, Yumoto H, Miura T et al. Damage threshold of coating materials on X-ray mirror for X-ray free electron laser[J]. The Review of Scientific Instruments, 87, 051801(2016).

    [10] Aquila A, Sobierajski R, Ozkan C et al. Fluence thresholds for grazing incidence hard X-ray mirrors[J]. Applied Physics Letters, 106, 23934(2015).

    [11] Aquila A, Sobierajski R, Ozkan C et al. Erratum: "Fluence thresholds for grazing incidence hard X-ray mirrors[J]. Applied Physics Letters, 115, 059901(2019).

    [12] Milov I, Makhotkin I A, Sobierajski R et al. Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser[J]. Optics Express, 26, 1-19685(2018).

    [13] Makhotkin I A, Milov I, Chalupský J et al. Damage accumulation in thin ruthenium films induced by repetitive exposure to femtosecond XUV pulses below the single-shot ablation threshold[J]. JOSA B, 35, 2799-2805(2018).

    [14] Akhmetov F, Milov I, Semin S et al. Laser-induced electron dynamics and surface modification in ruthenium thin films[J]. Vacuum, 212, 112045(2023).

    [15] Makhotkin I A, Sobierajski R, Chalupský J et al. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold[J]. Journal of Synchrotron Radiation, 25, 77-84(2018).

    [16] Mo M Z, Chen Z, Li R K et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction[J]. Science, 360, 1451-1455(2018).

    [17] Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 66, 776-781(1974).

    [18] Li Q, Lao H Y, Lin J et al. Study of femtosecond ablation on aluminum film with 3D two-temperature model and experimental verifications[J]. Applied Physics A, 105, 125-129(2011).

    [19] Liu D, Chen C S, Man B Y et al. Experimental investigation and 3D-simulation of the ablated morphology of titanium surface using femtosecond laser pulses[J]. European Physical Journal Applied Physics, 72, 31301(2015).

    [20] Zhigilei L V, Lin Z B, Ivanov D S. Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion[J]. The Journal of Physical Chemistry C, 113, 1-11906(2009).

    [21] Rethfeld B, Ivanov D S, Garcia M E et al. Modelling ultrafast laser ablation[J]. Journal of Physics D: Applied Physics, 50, 193001(2017).

    [22] Schmidt V, Husinsky W, Betz G. Ultrashort laser ablation of metals: pump–probe experiments, the role of ballistic electrons and the two-temperature model[J]. Applied Surface Science, 197, 145-155(2002).

    [23] Povarnitsyn M E, Itina T E, Khishchenko K V et al. Multi-material two-temperature model for simulation of ultra-short laser ablation[J]. Applied Surface Science, 253, 6343-6346(2007).

    [24] Byskov-Nielsen J, Savolainen J M, Christensen M S et al. Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations[J]. Applied Physics A, 103, 447-453(2011).

    [25] Christensen B H, Vestentoft K, Balling P. Short-pulse ablation rates and the two-temperature model[J]. Applied Surface Science, 253, 6347-6352(2007).

    [26] Milov I, Lipp V, Medvedev N et al. Modeling of XUV-induced damage in Ru films: the role of model parameters[J]. Journal of the Optical Society of America B, 35, B43(2018).

    [27] Akhmetov F, Medvedev N, Makhotkin I et al. Effect of atomic-temperature dependence of the electron-phonon coupling in two-temperature model[J]. Materials, 15, 5193(2022).

    [28] Akhmetov F, Milov I, Semin S et al. Laser-induced electron dynamics and surface modification in ruthenium thin films[J]. Vacuum, 212, 112045(2023).

    [29] Norman G E, Starikov S V, Stegailov V V et al. Atomistic modeling of warm dense matter in the two-temperature state[J]. Contributions to Plasma Physics, 53, 129-139(2013).

    [30] Norman G E, Starikov S V, Stegailov V V. Atomistic simulation of laser ablation of gold: effect of pressure relaxation[J]. Journal of Experimental and Theoretical Physics, 114, 792-800(2012).

    [31] Chen J K, Tzou D Y, Beraun J E. A semiclassical two-temperature model for ultrafast laser heating[J]. International Journal of Heat and Mass Transfer, 49, 307-316(2006).

    [32] Gan Y, Chen J K. Integrated continuum-atomistic modeling of nonthermal ablation of gold nanofilms by femtosecond lasers[J]. Applied Physics Letters, 94, 201116(2009).

    [33] Kittel C[M]. Introduction to solid state physics(1996).

    [34] Bonn M, Denzler D N, Funk S et al. Ultrafast electron dynamics at metal surfaces: competition between electron-phonon coupling and hot-electron transport[J]. Physical Review B, 61, 1101-1105(2000).

    [35] Ho C Y, Powell R W, Liley P E. Thermal conductivity of the elements[J]. Journal of Physical and Chemical Reference Data, 1, 279-421(1972).

    [36] Peng H J, Zhou J L, Xie Y Q. Thermodynamic properties and heat capacity of Ru metal in HCP, FCC, BCC and liquid state[J]. Transactions of Nonferrous Metals Society of China, 20, 1950-1956(2010).

    [37] Gall D. Electron mean free path in elemental metals[J]. Journal of Applied Physics, 119, 085101(2016).

    [38] Zeng Q Y, Dai J Y. Structural transition dynamics of the formation of warm dense gold: from an atomic scale view[J]. Science China Physics, Mechanics & Astronomy, 63, 263011(2020).

    [39] Protim Hazarika M, Tripathi A, Chakraborty S N. Two-temperature molecular dynamics simulation study of copper thin film irradiation with femtosecond and picosecond laser pulses[J]. Journal of Laser Applications, 35, 022005(2023).

    [40] Xie J W, Yan J F, Zhu D Z. Atomic simulation of irradiation of Cu film using femtosecond laser with different pulse durations[J]. Journal of Laser Applications, 32, 022016(2020).

    [41] Amouye Foumani A, Niknam A R. Atomistic simulation of femtosecond laser pulse interactions with a copper film: effect of dependency of penetration depth and reflectivity on electron temperature[J]. Journal of Applied Physics, 123, 043106(2018).

    [42] Ivanov D S, Zhigilei L V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films[J]. Physical Review B, 68, 064114(2003).

    [43] Wang X M, Ye X, Yao H B et al. Simulation of femtosecond laser ablation and spallation of titanium film based on two-temperature model and molecular dynamics[J]. Journal of Laser Applications, 33, 012047(2021).

    Xue HAI, Feifei ZHANG, Ali WEN, Yaru YIN, Cuilan REN, Ping HUAI. Numerical analysis of X-ray free-electron laser interaction with metal ruthenium using the two-temperature model[J]. NUCLEAR TECHNIQUES, 2024, 47(7): 070201
    Download Citation