• Chinese Optics Letters
  • Vol. 22, Issue 4, 043401 (2024)
De Wang1、2, Hong Yu1、2、3、*, Zhijie Tan1, Ronghua Lu1, and Shensheng Han1、2、3
Author Affiliations
  • 1Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    DOI: 10.3788/COL202422.043401 Cite this Article Set citation alerts
    De Wang, Hong Yu, Zhijie Tan, Ronghua Lu, Shensheng Han. Angle measurement of pulsars based on spatially modulated X-ray intensity correlation[J]. Chinese Optics Letters, 2024, 22(4): 043401 Copy Citation Text show less
    References

    [1] A. Hewish, S. J. Bell, J. D. H. Pilkington et al. Observation of a rapidly pulsating radio source. Nature, 217, 709(1968).

    [2] G. S. Downs. Interplanetary navigation using pulsating radio sources(1974).

    [3] D. J. Pines. ARPA/DARPA space programs. XNAV Ind. Day, 8, 1(2004).

    [4] H. Schuh, D. Behrend. VLBI: a fascinating technique for geodesy and astrometry. J. Geodyn., 61, 68(2012).

    [5] J. T. Armstrong, D. Mozurkewich, L. J. Rickard et al. The navy prototype optical interferometer. Astrophys. J., 496, 550(1998).

    [6] T. A. Ten Brummelaar, H. A. McAlister, S. T. Ridgway et al. First results from the CHARA array. II. A description of the instrument. Astrophys. J., 628, 453(2005).

    [7] J. Davis, W. J. Tango, A. J. Booth et al. The Sydney University stellar interferometer—I. The instrument. MNRAS, 303, 773(1999).

    [8] E. V. Garcia, M. W. Muterspaugh, G. van Belle et al. VISION: a six-telescope fiber-fed visible light beam combiner for the navy precision optical interferometer. Publ. Astron. Soc. Pac., 128, 055004(2016).

    [9] T. J. Chester, S. A. Butman. Navigation using X-ray pulsars(1981).

    [10] J. E. Hanson. Principles of X-ray Navigation(1996).

    [11] J. Sala, A. Urruela, X. Villares et al. Feasibility study for a spacecraft navigation system relying on pulsar timing information(2004).

    [12] S. I. Sheikh, A. R. Golshan, D. J. Pines. Absolute and relative position determination using variable celestial X-ray sources. Proceedings of 30th Annual AAS Guidance and Control Conference, 855(2007).

    [13] X. Zhang, P. Shuai, L. Huang et al. Mission overview and initial observation results of the X-ray pulsar navigation-I satellite. Int. J. Aerosp. Eng., 2017, 8561830(2017).

    [14] L. Keesey, C. Skelly. NASA team first to demonstrate X-ray navigation in space(2018).

    [15] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics(1995).

    [16] L. Yao, S. Tong, L. Sheng et al. Study of a high-precision pulsar angular position measuring method. Mod. Phys. Lett. B, 32, 1850171(2018).

    [17] W. J. De Wit, S. Le Bohec, J. A. Hinton et al. The potential for intensity interferometry with γ-ray telescope array. Proc. AIP, 984, 268(2008).

    [18] J. Cheng. Ghost imaging through turbulent atmosphere. Opt. Express, 17, 7916(2009).

    [19] G. Gbur. Partially coherent beam propagation in atmospheric turbulence. J. Opt. Soc. Am. A, 31, 2038(2014).

    [20] H. Ni, C. Liang, F. Wang et al. Non-Gaussian statistics of partially coherent light in atmospheric turbulence. Chin. Phys. B, 29, 064203(2020).

    [21] R. H. Brown, R. Q. Twiss. A test of a new type of stellar interferometer on Sirius. Nature, 178, 1046(1956).

    [22] R. Q. Twiss, R. H. Brown. The question of correlation between photons in coherent beams of light. Nature, 179, 1128(1957).

    [23] R. J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130, 2529(1963).

    [24] H. G. Li, D. J. Zhang, D. Q. Xu et al. Ghost imaging via optical parametric amplification. Phys. Rev. A, 92, 043816(2015).

    [25] Z. Yang, W. Li, Z. Song et al. Tracking compensation in computational ghost imaging of moving objects. IEEE Sensors J., 21, 85(2021).

    [26] S. Nan, Y. Bai, X. Shi et al. Second-order intensity-correlated imaging with a rotating reflected object. Laser Phys. Lett., 15, 115203(2018).

    [27] F. Lin, L. Hong, Y. Ren et al. Computational ghost rotational doppler metrology. Phys. Rev. Appl., 19, 034042(2023).

    [28] M. Li, Y. Li, H. Wang. Research on target recognition technology of GISC spectral imaging based on active laser lighting. Front. Phys., 10, 820(2022).

    [29] M. J. Sun, M. P. Edgar, G. M. Gibson et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun., 7, 12010(2016).

    [30] H. Li, Z. Chen, J. Xiong et al. Periodic diffraction correlation imaging without a beam-splitter. Opt. Express, 20, 2956(2012).

    [31] C. Zhang, Y. Wang, Y. Yin et al. High precision 3D imaging with timing corrected single photon LiDAR. Opt. Express, 31, 24481(2023).

    [32] J. Cheng, S. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett., 92, 093903(2004).

    [33] H. Yu, R. Lu, S. Han et al. Fourier-transform ghost imaging with hard X rays. Phys. Rev. Lett., 117, 113901(2016).

    [34] D. Pelliccia, A. Rack, M. Scheel et al. Experimental X-ray ghost imaging. Phys. Rev. Lett., 117, 113902(2016).

    [35] A. X. Zhang, Y. H. He, L. A. Wu et al. Tabletop X-ray ghost imaging with ultra-low radiation. Optica, 5, 374(2018).

    [36] Y. H. He, A. X. Zhang, M. F. Li et al. High-resolution sub-sampling incoherent X-ray imaging with a single-pixel detector. APL Photonics, 5, 056102(2020).

    [37] H. Zhang, K. Li, C. Zhao et al. Efficient implementation of X-ray ghost imaging based on a modified compressive sensing algorithm. Chin. Phys. B, 31, 064202(2022).

    [38] Z. Tan, H. Yu, R. Zhu et al. Single-exposure Fourier-transform ghost imaging based on spatial correlation. Phys. Rev. A, 106, 053521(2022).

    [39] T. Su, Y. Li, L. Sheng et al. Angular position measurement of pulsars based on X-ray intensity correlation. Optik, 161, 8(2018).

    [40] Y. Li, T. Su, M. Luan et al. Constraint analysis of measurement accuracy in high-precision X-ray pulsar positioning. Int. J. Mod. Phys. B, 34, 2050296(2020).

    [41] J. W. Goodman. Statistical Optics(2015).

    [42] V. Lindberg. Uncertainties and Error Propagation(2000).

    [43] K. Shao, D. Gu, B. Ju et al. Analysis of Tiangong-2 orbit determination and prediction using onboard dual-frequency GNSS data. GPS Solut., 24, 11(2020).

    [44] Z. Xiong, L. Liu, Q. Li. Composite formation flying strategy for distributed space telescopes with an ultralarge aperture. J. Astron. Telesc. Inst., 6, 027002(2020).

    [45] Z. Zhang, L. Deng, J. Feng et al. A survey of precision formation relative state measurement technology for distributed spacecraft. Aerospace, 9, 362(2022).

    [46] L. Buinhas, M. Philips-Blum, K. Frankl et al. Formation operations and navigation concept overview for the IRASSI space interferometer. Proceedings of 2018 IEEE Aerospace Conference IEEE, 1(2018).

    [47] M. Philips-Blum, T. Pany, H. Gomez et al. Advancement of the relative positioning in space within IRASSI mission concept. Proceedings of AAS/AIAA Astrodynamics Specialist Conference, 8(2018).

    [48] H. Linz, D. Bhatia, L. Buinhas et al. Infrared astronomy satellite swarm interferometry (IRASSI): overview and study results. Adv. Space Res., 65, 831(2020).

    [49] R. N. Manchester, G. B. Hobbs, A. Teoh et al. The Australia telescope national facility pulsar catalogue. Astron. J., 129, 1993(2005).

    De Wang, Hong Yu, Zhijie Tan, Ronghua Lu, Shensheng Han. Angle measurement of pulsars based on spatially modulated X-ray intensity correlation[J]. Chinese Optics Letters, 2024, 22(4): 043401
    Download Citation