• Frontiers of Optoelectronics
  • Vol. 15, Issue 3, 12200 (2022)
Jing Zhang1、*, Chen Wang1, Yunkang Chen1, Yudiao Xiang1, Tianye Huang1, Perry Ping Shum1、2, and Zhichao Wu1
Author Affiliations
  • 1School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
  • 2Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • show less
    DOI: 10.1007/s12200-022-00037-0 Cite this Article
    Jing Zhang, Chen Wang, Yunkang Chen, Yudiao Xiang, Tianye Huang, Perry Ping Shum, Zhichao Wu. Fiber structures and material science in optical fiber magnetic field sensors[J]. Frontiers of Optoelectronics, 2022, 15(3): 12200 Copy Citation Text show less
    References

    [1] Ripka, P., Janosek, M.: Advances in magnetic field sensors. IEEE Sens. J. 10(6), 1108–1116 (2010)

    [2] Tumanski, S.: Modern magnetic field sensors—a review. Organ. 10(1), 1–12 (2013)

    [3] Murzin, D., Mapps, D.J., Levada, K., Belyaev, V., Omelyanchik, A., Panina, L., Rodionova, V.: Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20(6), 1569 (2020)

    [4] Melzer, M., Monch, J.I., Makarov, D., Zabila, Y., Bermúdez, G.S.C., Karnaushenko, D., Baunack, S., Bahr, F., Yan, C., Kaltenbrunner, M., Schmidt, O.G.: Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27(7), 1274–1280 (2015)

    [5] Lenz, J., Edelstein, A.S.: Magnetic sensors and their applications. IEEE Sens. J. 6(3), 631–649 (2006)

    [6] Liu, C., Shen, T., Wu, H.B., Feng, Y., Chen, J.J.: Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: a review. Opt. Fiber Technol. 65, 102634 (2021)

    [7] Alberto, N., Domingues, M.F., Marques, C., André, P., Antunes, P.: Optical fiber magnetic field sensors based on magnetic fluid: a review. Sensors 18(12), 4325 (2018)

    [8] Castrellon-Uribe J. Optical fiber sensors: an overview. IntechOpen. (2012)

    [9] Othonos, A.: Fiber Bragg gratings. Rev. Sci. Instrum. 68(12), 4309–4341 (1997)

    [10] Bartelt, H.: Fiber Bragg grating sensors and sensor arrays. Adv. Sci. Technol. 55, 138–144 (2008)

    [11] Liu, H., Or, S.W., Tam, H.Y.: Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor. Sens. Actuators A 173(1), 122–126 (2012)

    [12] Wu, B. J., Yang, Y., Qiu, K.: Magneto-optic fiber Bragg gratings with application to high-resolution magnetic field sensors. In: 2008 1st Asia-Pacific Optical Fiber Sensors Conference. Chengdu: IEEE: 1–3 (2008)

    [13] Yang, M., Dai, J., Zhou, C., Jiang, D.: Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt. Express 17(23), 20777–20782 (2009)

    [14] Dai, Y., Yang, M., Xu, G., Yuan, Y.: Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser. Opt. Express 21(14), 17386–17391 (2013)

    [15] Bao, L., Dong, X., Zhang, S., Shen, C., Shum, P.P.: Magnetic field sensor based on magnetic fluid-infiltrated phase-shifted fiber Bragg grating. IEEE Sens. J. 18(10), 4008–4012 (2018)

    [16] Estudillo-Ayala, J. M., Mata-Chávez, R. I., Hernández-García, J. C., Rojas-Laguna, R.: Long period fiber grating produced by arc discharges. Fiber Opt. Sens. IntechOpen (2012)

    [17] Gao, L., Zhu, T., Deng, M., Chiang, K.S., Sun, X., Dong, X., Hou, Y.: Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection. IEEE Photonics J. 4(6), 2095–2104 (2012)

    [18] Chiang, C.C., Chen, Z.J.: A novel optical fiber magnetic sensor based on electroforming long-period fiber grating. J. Lightwave Technol. 32(19), 3331–3336 (2014)

    [19] Zhao, Y., Liu, S., Xiong, C., Wang, Y., Li, Z., Sun, Z., Li, J., Wang, Y.: Magnetic field sensor based on helical long-period fiber grating with a three-core optical fiber. Opt. Express 29(13), 20649–20656 (2021)

    [20] Albert, J., Shao, L.Y., Caucheteur, C.: Tilted fiber Bragg grating sensors. Laser Photonics Rev. 7(1), 83–108 (2013)

    [21] Erdogan, T., Sipe, J.E.: Tilted fiber phase gratings. JOSA A 13(2), 296–313 (1996)

    [22] Yang, D., Du, L., Xu, Z., Jiang, Y., Xu, J., Wang, M., Bai, Y., Wang, H.: Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid. Appl. Phys. Lett. 104(6), 061903 (2014)

    [23] Childs, P., Candiani, A., Pissadakis, S.: Optical fiber cladding ring magnetic field sensor. IEEE Photonics Technol. Lett. 23(13), 929–931 (2011)

    [24] Zheng, J., Dong, X., Zu, P., Ji, J., Su, H., Shum, P.P.: Intensitymodulated magnetic field sensor based on magnetic fluid and optical fiber gratings. Appl. Phys. Lett. 103(18), 183511 (2013)

    [25] Nguyen, L.V., Hwang, D., Moon, S., Moon, D.S., Chung, Y.: High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 16(15), 11369–11375 (2018)

    [26] Tofighi, S., Bahrampour, A., Pishbin, N., Bahrampour, A.: Interferometric fiber-optic sensors, 1st edn. CRC Press, Boca Raton (2015)

    [27] Li, Z., Liao, C., Song, J., Wang, Y., Zhu, F., Wang, Y., Dong, X.: Ultrasensitive magnetic field sensor based on an in-fiber Mach-Zehnder interferometer with a magnetic fluid component. Photonics Res. 4(5), 197–201 (2016)

    [28] de Souza, F.C.D.N., Maia, L.S.P., de Medeiros, G.M., Miranda, M.A.R., Sasaki, J.M., Guimaraes, G.F.: Optical current and magnetic field sensor using Mach-Zehnder interferometer with nanoparticles. IEEE Sens. J. 18(19), 7998–8004 (2018)

    [29] Zhang, N., Wang, M., Wu, B., Han, M., Yin, B., Cao, J., Wang, C.: Temperature-insensitive magnetic field sensor based on an optoelectronic oscillator merging a Mach-Zehnder interferometer. IEEE Sens. J. 20(13), 7053–7059 (2020)

    [30] Zeng, L., Sun, X., Zhang, L., Hu, Y., Duan, J.: High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid. Optik 249, 168234 (2022)

    [31] Rao, C.N., Gui, X., Pawar, D., Huang, Q.G., Beera, C.S., Cao, P.J., Wen, J.L., Zhu, D.L., Lu, Y.Y.: Magneto-optical fiber sensor based on Fabry-Perot interferometer with perovskite magnetic material. J. Magn. Magn. Mater. 499, 166298 (2020)

    [32] Yin, S., Ruffin, P.B., Francis, T.S.: Fiber optic sensors, 2nd edn. CRC Press, Boca Raton (2008)

    [33] Lv, R.Q., Zhao, Y., Wang, D., Wang, Q.: Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement. IEEE Photonics Technol. Lett. 26(3), 217–219 (2013)

    [34] Xia, J., Wang, F., Luo, H., Wang, Q., Xiong, S.: A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors. 16(5), 620 (2016)

    [35] Zhang, D., Wei, H., Hu, H., Krishnaswamy, S.: Highly sensitive magnetic field microsensor based on direct laser writing of fiber-tip optofluidic Fabry-Pérot cavity. APL Photonics. 5(7), 076112 (2020)

    [36] Zheng, Y., Chen, L.H., Yang, J., Raghunandhan, R., Dong, X., So, P.L., Chan, C.C.: Fiber optic Fabry-Perot optofluidic sensor with a focused ion beam ablated microslot for fast refractive index and magnetic field measurement. IEEE J. Sel. Top. Quantum Electron. 23(2), 322–326 (2017)

    [37] Wang, X., Zhao, Y., Lv, R., Zheng, H., Cai, L.: Magnetic field measurement method based on the magneto-volume effect of hollow core fiber filled with magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–8 (2021)

    [38] Culshaw, B.: The optical fiber Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol. 17(1), R1 (2005)

    [39] Zu, P., Chan, C.C., Lew, W.S., Jin, Y., Zhang, Y., Liew, H.F., Chen, L.H., Wong, W.C., Dong, X.: Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 37(3), 398–400 (2012)

    [40] Zu, P., Chan, C.C., Koh, G.W., Lew, W.S., Jin, Y., Liew, H.F., Wong, W.C., Dong, X.: Enhancement of the sensitivity of magnetooptical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer. Sens. Actuators B Chem. 191, 19–23 (2014)

    [41] Zhao, Y., Wu, D., Lv, R.Q., Li, J.: Magnetic field measurement based on the Sagnac interferometer with a ferrofluid-filled highbirefringence photonic crystal fiber. IEEE Trans. Instrum. Meas. 65(6), 1503–1507 (2016)

    [42] Kashyap, R., Nayar, B.K.: An all single-mode fiber Michelson interferometer sensor. J. Lightwave Technol. 1(4), 619–624 (1983)

    [43] Deng, M., Sun, X., Han, M., Li, D.: Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid. Appl. Opt. 52(4), 734–741 (2013)

    [44] Chen, F., Jiang, Y.: Fiber optic magnetic field sensor based on the TbDyFe rod. Meas. Sci. Technol. 25(8), 085106 (2014)

    [45] Pu, S., Mao, L., Yao, T., Gu, J., Lahoubi, M., Zeng, X.: Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEEE Sens. J. 17(18), 5857–5861 (2017)

    [46] Feng, X., Jiang, Y., Zhang, H.: Fiber-optic Michelson magnetic field sensor based on a mechanical amplifier structure. Appl. Opt. 60(33), 10359–10364 (2021)

    [47] Harun, S.W., Lim, K.S., Tio, C.K., Dimyati, K., Ahmad, H.: Theoretical analysis and fabrication of tapered fiber. Optik 124(6), 538–543 (2013)

    [48] Zhao, Y., Wu, D., Lv, R.Q.: Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 27(1), 26–29 (2014)

    [49] Rodríguez-Schwendtner, E., Díaz-Herrera, N., Navarrete, M.C., Gonzalez-Cano, A., Esteban, O.: Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sens. Actuators A 264, 58–62 (2017)

    [50] Herrera-Piad, L.A., Haus, J.W., Jauregui-Vazquez, D., Sierra-Hernandez, J.M., Estudillo-Ayala, J.M., Lopez-Dieguez, Y., Rojas- Laguna, R.: Magnetic field sensing based on bi-tapered optical fibers using spectral phase analysis. Sensors 17(10), 2393 (2017)

    [51] Zhang, J., Qiao, X., Wang, R., Chen, F., Bao, W.: Highly sensitivity fiber-optic vector magnetometer based on two-mode fiber and magnetic fluid. IEEE Sens. J. 19(7), 2576–2580 (2018)

    [52] Zhang, Y., Ning, Y., Zhang, M., Guo, H., Zhang, Y., Liu, Z., Ji, X., Zhang, J., Yang, X., Yuan, L.: Spider silk-based fiber magnetic field sensor. J. Lightwave Technol. 39(20), 6631–6636 (2021)

    [53] Tam, J. M., Szunerits, S., Walt, D. R.: Optical fibers for nanodevices. Encyclopedia of nanoscience and nanotechnology. America: American Scientific Publishers. 8(177): 167–177 (2004)

    [54] Dai, J., Yang, M., Li, X., Liu, H., Tong, X.: Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt. Fiber Technol. 17(3), 210–213 (2011)

    [55] Wang, H., Pu, S., Wang, N., Dong, S., Huang, J.: Magnetic field sensing based on single-mode-multimode-single-mode fiber structures using magnetic fluids as cladding. Opt. Lett. 38(19), 3765–3768 (2013)

    [56] Wang, Q., Liu, X., Zhao, Y., Lv, R., Hu, H., Li, J.: Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid. Opt. Commun. 356, 628–633 (2015)

    [57] Ying, Y., Xu, K., Sun, L.L., Zhang, R., Guo, X.F., Si, G.Y.: D-shaped fiber magnetic-field sensor based on fine-tuning magnetic fluid grating period. IEEE Trans. Electron Dev. 64(4), 1735–1741 (2017)

    [58] Liu, H., Li, H., Wang, Q., Wang, M., Ding, Y., Zhu, C., Cheng, D.: Temperature-compensated magnetic field sensor based on surface plasmon resonance and directional resonance coupling in a D-shaped photonic crystal fiber. Optik 158, 1402–1409 (2018)

    [59] Gupta, B.D., Dodeja, H., Tomar, A.K.: Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quant. Electron. 28(11), 1629–1639 (1996)

    [60] Zhang, R., Liu, T., Han, Q., Chen, Y., Li, L.: U-bent single-modemultimode-single-mode fiber optic magnetic field sensor based on magnetic fluid. Appl. Phys. Express 7(7), 072501 (2014)

    [61] Zhu, L., Lin, Q., Yao, K., Zhao, N., Yang, P., Jiang, Z.: Fiber vector magnetometer based on balloon-like fiber structure and magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)

    [62] Grant, I.S., Phillips, W.R.: Electromagnetism, 2nd edn. Wiley, New York (2013)

    [63] Zheng, H., Shao, H.P., Lin, T., Zhao, Z.F., Guo, Z.M.: Preparation and characterization of silicone-oil-based γ-Fe2O3 magnetic fluid. Rare Met. 37(9), 803–807 (2018)

    [64] Chen, B., Fan, Y.G., Zhou, S.P.: Study on preparation of oil-based Fe3O4 nano magnetic fluid. Adv. Mater. Res. 148, 808–811 (2011)

    [65] Huang, W., Wu, J., Guo, W., Li, R., Cui, L.: Study on the magnetic stability of iron-nitride magnetic fluid. J. Alloy. Compd. 443(1–2), 195–198 (2007)

    [66] Martinez, L., Cecelja, F., Rakowski, R.: A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A 123, 438–443 (2005)

    [67] Yang, S.Y., Chieh, J.J., Horng, H.E., Hong, C.Y., Yang, H.C.: Origin and applications of magnetically tunable refractive index of magnetic fluid films. Appl. Phys. Lett. 84(25), 5204–5206 (2004)

    [68] Zhou, X., Li, X., Li, S., An, G.W., Cheng, T.: Magnetic field sensing based on SPR optical fiber sensor interacting with magnetic fluid. IEEE Trans. Instrum. Meas. 68(1), 234–239 (2018)

    [69] Cennamo, N., Arcadio, F., Marletta, V., Baglio, S., Zeni, L., Andò, B.: A magnetic field sensor based on spr-pof platforms and ferrofluids. IEEE Trans. Instrum. Meas. 70, 1–10 (2020)

    [70] Ou, Y., Chen, J., Chen, W., Zhu, Y., Xiao, W., Xiao, M., Cheng, C.: Multipoint magnetic field measurement based on magnetic fluid and FSI-FLRD. IEEE Sens. J. 21(16), 18249–18255 (2021)

    [71] Mochizuki, M., Furukawa, N., Nagaosa, N.: Erratum: Spin Model of Magnetostrictions in Multiferroic Mn Perovskites [Phys. Rev. Lett. 105, 037205 (2010)]. Phys. Rev. Lett. 106(11), 119901 (2011)

    [72] Del Moral, A., Algarabel, P.A., Arnaudas, J.I., Benito, L., Ciria, M., De la Fuente, C., Garcia-Landa, B., Ibarra, M.R., Marquina, C., Morellón, L., De Teresa, J.M.: Magnetostriction effects. J. Magn. Magn. Mater. 242, 788–796 (2002)

    [73] Tiercelin, N., Preobrazhensky, V., Pernod, P., Ostaschenko, A.: Enhanced magnetoelectric effect in nanostructured magnetostrictive thin film resonant actuator with field induced spin reorientation transition. Appl. Phys. Lett. 92(6), 062904 (2008)

    [74] Shi, C., Chen, J., Wu, G., Li, X., Zhou, J., Ou, F.: Stable dynamic detection scheme for magnetostrictive fiber-optic interferometric sensors. Opt. Express 14(12), 5098–5102 (2006)

    [75] Chen, F., Jiang, Y., Gao, H., Jiang, L.: A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor. Opt. Lasers Eng. 71, 62–65 (2015)

    [76] Filograno, M.L., Pisco, M., Catalano, A., Forte, E., Aiello, M., Soricelli, A., Davino, D., Visone, C., Cutolo, A., Cusano, A.: Triaxial fiber optic magnetic field sensor for MRI applications. Eur. Workshop Opt. Fiber Sens. 9916, 106–109 (2016)

    [77] De Angulo, L.R., Abell, J.S., Harris, I.R.: Magnetostrictive properties of polymer bonded Terfenol-D. J. Magn. Magn. Mater. 157, 508–509 (1996)

    [78] Imaizumi, D., Hayakawa, T., Nogami, M.: Faraday rotation effects of Mn2+- modified Tb2O3-B2O3 glass in pulsed magnetic field. J. Lightwave Technol. 20(4), 740 (2002)

    [79] Sun, L., Jiang, S., Zuegel, J.D., Marciante, J.R.: Effective Verdet constant in a terbium-doped-core phosphate fiber. Opt. Lett. 34(11), 1699–1701 (2009)

    [80] Huang, M., Xu, Z.C.: Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications. Appl. Phys. A 81(1), 193–196 (2005)

    [81] Chen, Z., Wang, X., Wang, J., Hang, Y.: Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visible–infrared optical isolators. Opt. Mater. 46, 12–15 (2015)

    [82] Snetkov, I.L., Yasuhara, R., Starobor, A.V., Mironov, E.A., Palashov, O.V.: Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals. IEEE J. Quantum Electron. 51(7), 1–7 (2015)

    [83] Jiang, J., Wu, Z., Sheng, J., Zhang, J., Song, M., Ryu, K., Li, Z., Hong, Z., Jin, Z.: A new approach to measure magnetic field of high-temperature superconducting coil based on magneto-optical Faraday Effect. IEEE Trans. Appl. Supercond. 31(1), 1–5 (2020)

    [84] Babaev, O. G. O., Matyunin, S. A., Virchenko, M. K.: Modeling of the magneto-optical channel of a fiber-optic displacement sensor. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok: IEEE, 1–6 (2018)

    [85] Ni, X. J., Huang, M.: Faraday effect optical current/magnetic field sensors based on cerium-substituted yttrium iron garnet single crystal. In: 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE: 1–4 (2010)

    [86] Shreeve, B., Selfridge, R., Schultz, S., Gaeta, C., Forber, R.: Magnetic field sensing using D-fiber coupled Bi: RIG slab.21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics. 7753: 77534S (2011)

    [87] DaSilva, A.A.D., Alves, H.P., Marcolino, F.C., DoNascimento, J.F., Martins-Filho, J.F.: Computational modeling of optical fiber-based magnetic field sensors using the Faraday and Kerr magnetooptic effects. IEEE Trans. Magn. 56(9), 1–9 (2020)

    [88] Zubia, J., Casado, L., Aldabaldetreku, G., Montero, A., Zubia, E., Durana, G.: Design and development of a low-cost optical current sensor. Sensors. 13(10), 13584–13595 (2013)

    [89] Jia, Q., Han, Q., Liang, Z., Cheng, Z., Hu, H., Wang, S., Ren, K., Jiang, J., Liu, T.: Temperature compensation of optical fiber current sensors with a static bias. IEEE Sens. J. 22(1), 352–356 (2021)

    [90] Katsukawa, H., Ishikawa, H., Okajima, H., Cease, T.W.: Development of an optical current transducer with a bulk type Faraday sensor for metering. IEEE Trans. Power Delivery 11(2), 702–707 (1996)

    [91] Malewski, R.: High-voltage current transformers with optical signal transmission. Opt. Eng. 20(1), 200154 (1981)

    [92] Papp, A., Harms, H.: Magnetooptical current transformer. 1: principles. Appl. Opt. 19(22), 3729–3734 (1980)

    [93] Han, J., Hu, H., Wang, H., Zhang, B., Song, X., Ding, Z., Zhang, X., Liu, T.: Temperature-compensated magnetostrictive current sensor based on the configuration of dual fiber Bragg gratings. J. Lightwave Technol. 35(22), 4910–4915 (2017)

    [94] Qi, Y., Wang, M., Jiang, F., Zhang, X., Cong, B., Liu, Y.: Novel fiber optic current transformer with new phase modulation method. Photonic Sens. 10(3), 275–282 (2020)

    [95] Gao, H., Wang, G., Gao, W., Li, S.: A chiral photonic crystal fiber sensing coil for decreasing the polarization error in a fiber optic current sensor. Opt. Commun. 469, 125755 (2020)

    [96] Bucholtz, F., Villarruel, C.A., Davis, A.R., Kirkendall, C.K., Dagenais, D.M., McVicker, J.A., Knudsen, T.: Multichannel fiber-optic magnetometer system for undersea measurements. J. Lightwave Technol. 13(7), 1385–1395 (1995)

    [97] Coghill, P., Bassett, I., Barrow, R., Rohatgi, S., Vance, R.: Field trial of an electrically passive optical-fiber magnetometer. Appl. Opt. 34(31), 7258–7262 (1995)

    [98] Zhang, X.L., Zhou, X.J., Hu, Y.M., Ni, M., Yu, Y.M.: All polarization-maintaining fiber earth magnetic field sensor. Zhongguo Jiguang Chin. J. Laser. 32(11), 1515–1518 (2005)

    [99] Zhao, Q., Zhou, K., Wu, Z., Yang, C., Feng, Z., Cheng, H., Xu, S.: Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. Opt. Lett. 43(1), 42–45 (2018)

    [100] Li, J., Deng, Y., Wang, X., Lu, H., Liu, Y.: Miniature wide-range three-axis vector atomic magnetometer. IEEE Sens. J. 21(21), 23943–23948 (2021)

    [101] Barrias, A., Casas, J.R., Villalba, S.: A review of distributed optical fiber sensors for civil engineering applications. Sensors. 16(5), 748(2016)

    [102] Zhao, Z., Tang, M., Lu, C.: Distributed multicore fiber sensors. Opto-Electron. Adv. 3(2), 02190024 (2020)

    [103] Li, M., Zhou, J., Xiang, Z., Lv, F.: Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings. In: 2005 IEEE Networking. Tucson: IEEE: 490–495 (2005)

    [104] Palmieri, L., Galtarossa, A.: Distributed polarization-sensitive reflectometry in nonreciprocal single-mode optical fibers. J. Lightwave Technol. 29(21), 3178–3184 (2011)

    [105] Palmieri, L.: Distributed polarimetric measurements for optical fiber sensing. Opt. Fiber Technol. 19(6), 720–728 (2013)

    [106] Masoudi, A., Newson, T.P.: Distributed optical fiber dynamic magnetic field sensor based on magnetostriction. Appl. Opt. 53(13), 2833–2838 (2014)

    [107] Ou, Y., Chen, J., Chen, W., Cheng, C., Zhu, Y., Xiao, W., Lv, H.: A quasi-distributed fiber magnetic field sensor based on frequencyshifted interferometry fiber cavity ringdown technique. Opt. Laser Technol. 146, 107607 (2022)

    Jing Zhang, Chen Wang, Yunkang Chen, Yudiao Xiang, Tianye Huang, Perry Ping Shum, Zhichao Wu. Fiber structures and material science in optical fiber magnetic field sensors[J]. Frontiers of Optoelectronics, 2022, 15(3): 12200
    Download Citation