[1] ZHANG X X, LI L, FAN E, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chem Soc Rev, 2018.47(19): 7239–7302.
[2] CHEN M Y, MA X T, CHEN B, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622–2646.
[3] YU J Z, WANG X, ZHOU M Y, et al. A redox targeting-based material recycling strategy for spent lithium-ion batteries[J]. Energy Environ Sci, 2019, 12(9): 2672–2677.
[4] KANG D H P, CHEN M , OGUNSEITAN O. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste[J]. Environ Sci Technol, 2013, 47(10): 5495–5503.
[5] HU, J T, ZHANG J L, LI H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. J Power Sources, 2017, 351(31): 192–199.
[6] LI L, QU W J, ZHANG X X, et al. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. J Power Sources, 2015, 282: 544–551.
[7] KALLURI S, YOON M, JO M, et al. Li-ion cells: Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Adv Energy Mater, 2017, 7(1):216–223.
[8] YANG S, CHEN G, CHEN Z. Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards highperformance active particles[J]. Green Chem, 2018, 20(4): 851–862.
[9] MENG Q, ZHANG Y J, DONG P. A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects[J]. Waste Manage,2018, 71: 372–380.
[10] NIE H H, XU L, SONG D W, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chem,2015, 17(2): 1276–1280.
[11] VERNICA P, SERRAS P, VILLALUENGA I, et al. Na-ion batteries,recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ Sci, 2012, 5(3): 584–591.
[12] HUON H M, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J].Energy Environ Sci, 2015, 8(1): 81–102.
[13] HOU H, GAN B, GONNG Y et al. P2-type Na0.67Ni0.23Mg0.1Mn0.67O2 as a high-performance cathode for a sodium-ion battery[J]. Inorg Chem,2016, 55(17): 9033–9037.
[14] ZHAO J, XU J, LEE D H, et al. Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries[J]. J Power Sources, 2014, 264(15): 235–239.
[15] KUMAR V K, GHOSH S, BISWAS S, et al. P2-type Na0.67Mn0.5Fe0.5O2 synthesized by solution combustion method as an efficient cathode material for sodium-ion batteries[J]. J Electrochem Soc, 2021, 168(3): 030512.
[16] XU J T, CHOU S L, WANG J L, et al. Layered P2-Na0.66Fe0.5Mn0.5O2 cathode material for rechargeable sodium-ion batteries[J].Chemelectrochem, 2014, 1(2): 371–374.
[17] YING B, , ZHAO L X, WU C, et al. Enhanced sodium ion storage behavior of P2-type Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route[J]. ACS Appl Mater Interf, 2016, 8(4): 2857–2865.
[18] YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nat Mater, 2012, 11(6): 512–517.
[19] WANG H B, GAO R, LI Z Y, et al. Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2 as a sodium ion battery cathode material[J]. Inorg Chem, 2018, 57(9): 5249–5257.
[20] ALTIN S, ALTUNDA S, ALTIN E, et al. An investigation of the improvement in energy storage performance of Na2/3Mn1/2Fe1/2O2 by systematic Al-substitution[J]. J Mater Sci: Mater Electr, 2020, 31(17):14784–14794.
[21] PARK J K, PARK G G, KWAK H H, et al. Enhanced rate capability and cycle performance of titanium-substituted P2-type Na0.67Fe0.5Mn0.5O2 as a cathode for sodium-ion batteries[J]. ACS Omega, 2018, 3(1):361–368.
[22] DARBAR D, MURALIDHARAN N, HERMANN R P, et al.Evaluation of electrochemical performance and redox activity of Fe in Ti doped layered P2-Na0.67Mn0.5Fe0.5O2 cathode for sodium ion batteries[J]. Electrochimica Acta, 2021, 380: 138156.
[23] ALTIN S, ALTUNDAG S, ALTIN E, et al. An investigation of Ti-substitution effects of Na0.67Mn0.5Fe0.5O2 battery cells for structural and electrochemical properties[J]. Intern J Energy Res, 2020, 44(14):11794–11806.
[24] SUI Y L, HAO Y Y, ZHANG X P, et al. Improved electrochemical properties of vanadium substituted Na0.67Fe0.5Mn0.5O2 cathode material for sodium-ion batteries[J]. Ceram Int, 2020, 47(4): 5227–5234.
[25] ZHOU D M, HUANG W X, LV X, et al. A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries[J]. J Power Sources, 2019, 421: 147–155.
[26] DUFFORT V, TALAIE E, BLACK R, et al. Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions[J]. Chem Mater,2015, 27(7): 2515–2524.
[27] ZHENG S Y, ZHONG G M, MCDONALD M J, et al. Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries[J]. J Mater Chem A, 2016,4(23): 9054–9062.
[28] XU J, LEE D H, CLEMENT R J, et al. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0 <x,y,z< 1) intercalation cathode materials for high-energy Na-ion batteries[J]. Chem Mater,2014, 26(2): 1260–1269.
[29] MARINO C, MARELLI E, VILLEVIEILLE C. Impact of cobalt content in Na0.67MnxFeyCozO2 (x+y+z=1), a cathode material for sodium ion batteries[J]. RSC Adv, 2017, 7(23): 13851–13857.
[30] VEERASUBRAMANI G K, SUBRAMANIAN Y, PARK M S, et al.Enhanced sodium-ion storage capability of P2/O3 biphase by Li-ion substitution into P2-type Na0.5Fe0.5Mn0.5O2 layered cathode[J].Electrochim Acta, 2019, 296: 1027–1034.
[31] ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries[J]. Energy Environ Sci, 2017, 10(5):1051–1074.
[32] XU Z X, YANG J, ZHANG T, et al. Stable Na metal an-ode enabled by a reinforced multistructural SEI layer[J]. Adv Funct Mater, 2019,29(27): 1901924.
[33] JIANG R, HONG L, LIU Y C, et al. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery[J]. Energy Stor Mater, 2021, 42: 370–379.