• Journal of Geo-information Science
  • Vol. 22, Issue 1, 41 (2020)
Min DENG1、1, Jiannan CAI1、1、*, Wentao YANG2、2, Jianbo TANG1、1, Xuexi YANG1、1, Qiliang LIU1、1, and Yan SHI1、1
Author Affiliations
  • 1Department of Geo-information, Central South University, Changsha 410083, China
  • 1中南大学地理信息系,长沙 410083
  • 2National-Local Joint Engineering Laboratory of Geospatial Information Technology, Hunan University of Science and Technology, Xiangtan 411100, China
  • 2湖南科技大学地理空间信息技术国家地方联合工程实验室,湘潭 411100
  • show less
    DOI: 10.12082/dqxxkx.2020.190491 Cite this Article
    Min DENG, Jiannan CAI, Wentao YANG, Jianbo TANG, Xuexi YANG, Qiliang LIU, Yan SHI. Spatio-temporal Analysis Methods for Multi-modal Geographic Big Data[J]. Journal of Geo-information Science, 2020, 22(1): 41 Copy Citation Text show less
    References

    [1] Geographical information science[J]. International Journal of Geographical Information Systems, 6, 31-45(1992).

    [2] A framework for temporal geographic information[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 25, 1-14(1988).

    [3] et alSpatiotemp oral data mining: A computational perspective[J]. ISPRS International Journal of Geo-information, 4, 2306-2338(2015).

    [4] Big data: Using smart big data, analytics and metrics to make better decisions and improve performance[M]. Chichester, UK: JohnWiley& Sons(2015).

    [5] 傅伯杰, 冷疏影, 宋长青. 新时期地理学的特征与任务[J]. 地理科学, 2015,35(8):939-945. [ Fu BJ, Leng SY, Song CQ. The characteristics and tasks of geography in the new era[J]. Scientia GeographicaSinica, 2015,35(8):939-945. ] [ Fu B J, Leng S Y, Song C Q. The characteristics and tasks of geography in the new era[J]. Scientia GeographicaSinica, 2015,35(8):939-945. ]

    [6] et alSpatiotemporal data mining in the era of big spatial data: Algorithms and applications[C]. Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. ACM, 1-10(2012).

    [7] et alGeospatial big data handling theory and methods: A review and research challenges[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 119-133(2016).

    [8] 朱庆, 付萧. 多模态时空大数据可视分析方法综述[J]. 测绘学报, 2017,46(10):1672-1677. [ ZhuQ, FuX. The review of visual analysis methods of multi-modal spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1672-1677. ] [ Zhu Q, Fu X. The review of visual analysis methods of multi-modal spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1672-1677. ]

    [9] 杨振山, 龙瀛, DOUAYNicolas. 大数据对人文—经济地理学研究的促进与局限[J]. 地理科学进展, 2015,34(4):410-417. [ Yang ZS, LongY, DOUAYNicolas. Opportunities and limitations of big data applications to human and economic geography: The state of the art[J]. Progress in Geography, 2015,34(4):410-417. ] [ Yang Z S, Long Y, DOUAY Nicolas. Opportunities and limitations of big data applications to human and economic geography: The state of the art[J]. Progress in Geography, 2015,34(4):410-417. ]

    [10] 华一新, 周成虎. 面向全空间信息系统的多粒度时空对象数据模型描述框架[J]. 地球信息科学学报, 2017,19(9):1142-1149. [ Hua YX, Zhou CH. Description frame of data model of multi-granularity spatio-temporal object for pan-spatial information system[J]. Journal of Geo-information Science, 2017,19(9):1142-1149. ] [ Hua Y X, Zhou C H. Description frame of data model of multi-granularity spatio-temporal object for pan-spatial information system[J]. Journal of Geo-information Science, 2017,19(9):1142-1149. ]

    [11] 裴韬, 刘亚溪, 郭思慧, 等. 地理大数据挖掘的本质[J]. 地理学报, 2019,74(3):586-598. [ PeiT, Liu YX, Guo SH, et al. Principle of big geodata mining[J]. Acta GeographicaSinica, 2019,74(3):586-598. ] [ Pei T, Liu Y X, Guo S H, et al. Principle of big geodata mining[J]. Acta GeographicaSinica, 2019,74(3):586-598. ]

    [12] 周成虎. 全空间地理信息系统展望[J]. 地理科学进展, 2015,34(2):129-131. [ Zhou CH. Prospects on pan-spatial information system[J]. Progress in Geography, 2015,34(2):129-131. ] [ Zhou C H. Prospects on pan-spatial information system[J]. Progress in Geography, 2015,34(2):129-131. ]

    [13] 华一新. 全空间信息系统的核心问题和关键技术[J]. 测绘科学技术学报, 2016,33(4):331-335. [ Hua YX. The core problems and key technologies of pan-spatial information system[J]. Journal of Geomatics Science and Technology, 2016,33(4):331-335. ] [ Hua Y X. The core problems and key technologies of pan-spatial information system[J]. Journal of Geomatics Science and Technology, 2016,33(4):331-335. ]

    [14] 宋长青. 地理学研究范式的思考[J]. 地理科学进展, 2016,35(1):1-3. [ Song CQ. On paradigms of geographical research[J]. Progress in Geography, 2016,35(1):1-3. ] [ Song C Q. On paradigms of geographical research[J]. Progress in Geography, 2016,35(1):1-3. ]

    [15] 李德仁, 王树良, 史文中, 等. 论空间数据挖掘和知识发现[J]. 武汉大学学报·信息科学版, 2001,26(6):491-499. [ Li DR, Wang SL, Shi WZ, et al. On spatial data mining and knowledge discovery (SDMKD)[J]. Geomatics and Information Science of Wuhan University, 2001,26(6):491-499. ] [ Li D R, Wang S L, Shi W Z, et al. On spatial data mining and knowledge discovery (SDMKD)[J]. Geomatics and Information Science of Wuhan University, 2001,26(6):491-499. ]

    [16] 李德仁, 王树良, 李德毅, 等. 论空间数据挖掘和知识发现的理论与方法[J]. 武汉大学学报·信息科学版, 2002,27(3):221-233. [ Li DR, Wang SL, Li DY, et al. Theories and technologies of spatial data mining and knowledge discovery[J]. Geomatics and Information Science of Wuhan University, 2002,27(3):221-233. ] [ Li D R, Wang S L, Li D Y, et al. Theories and technologies of spatial data mining and knowledge discovery[J]. Geomatics and Information Science of Wuhan University, 2002,27(3):221-233. ]

    [17] 王劲峰, 葛咏, 李连发, 等. 地理学时空数据分析方法[J]. 地理学报, 2014,69(9):1326-1345. [ Wang JF, GeY, Li LF, et al. Spatiotemporal data analysis in geography[J]. Acta GeographicaSinica, 2014,69(9):1326-1345. ] [ Wang J F, Ge Y, Li L F, et al. Spatiotemporal data analysis in geography[J]. Acta GeographicaSinica, 2014,69(9):1326-1345. ]

    [18] et alA hybrid method for interpolating missing data in heterogeneous spatio-temporal datasets[J]. ISPRS International Journal of Geo-information, 5, 13(2016).

    [19] 何占军, 邓敏, 蔡建南, 等. 顾及背景知识的多事件序列关联规则挖掘方法[J]. 武汉大学学报·信息科学版, 2018,43(5):766-772. [ He ZJ, DengM, Cai JN, et al. A context-based association rules mining method for multiple event sequences[J]. Geomatics and Information Science of Wuhan University, 2018,43(5):766-772. ] [ He Z J, Deng M, Cai J N, et al. A context-based association rules mining method for multiple event sequences[J]. Geomatics and Information Science of Wuhan University, 2018,43(5):766-772. ]

    [20] et alMining spatiotemporal association patterns from complex geographic phenomena[J]. International Journal of Geographical Information Science, 2019:1-26. https://doi.org/10.1080/1365 8816., 1566549(2019).

    [21] et alHeterogeneous space-time artificial neural networks for space-time series prediction[J]. Transactions in GIS, 22, 183-201(2018).

    [22] 邓敏, 刘启亮, 李光强, 等. 空间聚类分析及应用[M]. 北京: 科学出版社, 2011. [ DengM, Liu QL, Li GQ, et al.Spatial clustering methods and applications[M]. Beijing: Science Press, 2011. ] [ Deng M, Liu Q L, Li G Q, et al. Spatial clustering methods and applications[M]. Beijing: Science Press, 2011. ]

    [23] Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP)[J]. International Journal of Geographical Information Science, 22, 801-823(2008).

    [24] et alPermutation-test-based clustering method for detection of dynamic patterns in spatio-temporal datasets[J]. Computers, Environment and Urban Systems, 75, 204-216(2019).

    [25] ST-DBSCAN: An algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering, 60, 208-221(2007).

    [26] et alWindowed nearest neighbour method for mining spatio-temporal clusters in the presence of noise[J]. International Journal of Geographical Information Science, 24, 925-948(2010).

    [27] et alA space-time permutation scan statistic for disease outbreak detection[J]. PLOS Medicine, 2, 216-224(2005).

    [28] The self-organizing map, the Geo-SOM, and relevant variants for geosciences[J]. Computers &Geosciences, 31, 155-163(2005).

    [29] 汪中, 刘贵全, 陈恩红. 一种优化初始中心点的K-means算法[J]. 模式识别与人工智能, 2009,22(2):299-304. [ WangZ, Liu GQ, Chen EH. A k-means algorithm based on optimized initial center points[J]. Pattern Recognition and Artificial Intelligence, 2009,22(2):299-304. ] [ Wang Z, Liu G Q, Chen E H. A k-means algorithm based on optimized initial center points[J]. Pattern Recognition and Artificial Intelligence, 2009,22(2):299-304. ]

    [30] et alFast density clustering strategies based on the k-means algorithm[J]. Pattern Recognition, 71, 375-386(2017).

    [31] Combining partitional and hierarchical algorithms for robust and efficient data clustering with cohesion self-merging[J]. IEEE Transactions on Knowledge and Data Engineering, 17, 145-159(2005).

    [32] 焦利民, 张欣, 毛立凡. 自组织双重空间聚类算法的城市扩张结构分析应用[J]. 地球信息科学学报, 2015,17(6):638-643. [ Jiao LM, ZhangX, Mao LF. Self-organizing dual spatial clustering algorithm and its application in the analysis of urban sprawl structure[J]. Journal of Geo-information Science, 2015,17(6):638-643. ] [ Jiao L M, Zhang X, Mao L F. Self-organizing dual spatial clustering algorithm and its application in the analysis of urban sprawl structure[J]. Journal of Geo-information Science, 2015,17(6):638-643. ]

    [33] Spatio-temporal polygonal clustering with space and time as first-class citizens[J]. Geo-informatica, 17, 387-412(2012).

    [34] et alA density-based spatial clustering algorithm considering both spatial proximity and attribute similarity[J]. Computers & Geosciences, 46, 296-309(2012).

    [35] 石岩, 刘启亮, 邓敏, 等. 融合图论与密度思想的混合空间聚类方法[J]. 武汉大学学报·信息科学版, 2012,37(11):1276-1280. [ ShiY, Liu QL, DengM, et al. A hybrid spatial clustering method based on graph theory and spatial density[J]. Geomatics and Information Science of Wuhan University, 2012,37(11):1276-1280. ] [ Shi Y, Liu Q L, Deng M, et al. A hybrid spatial clustering method based on graph theory and spatial density[J]. Geomatics and Information Science of Wuhan University, 2012,37(11):1276-1280. ]

    [36] et alUsing gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics[J]. International Journal of Health Geographics, 15, 27(2016).

    [37] Dual clustering: Integrating data clustering over optimization and constraint domains[J]. IEEE Transactions on Knowledge and Data Engineering, 17, 628-637(2005).

    [38] 吉根林, 孙鸿艳, 赵斌. 时空轨迹群体运动模式挖掘研究进展[J]. 南京航空航天大学学报, 2016,48(5):615-624. [ Ji GL, Sun HY, ZhaoB. Research progress in group moving patterns mining of spatio-temporal trajectories[J]. Journal of Nanjing University of Aeronautics & Aeronautics, 2016,48(5):615-624. ] [ Ji G L, Sun H Y, Zhao B. Research progress in group moving patterns mining of spatio-temporal trajectories[J]. Journal of Nanjing University of Aeronautics & Aeronautics, 2016,48(5):615-624. ]

    [39] 龚玺, 裴韬, 孙嘉, 等. 时空轨迹聚类方法研究进展[J]. 地理科学进展, 2011,30(5):522-534. [ GongX, PeiT, SunJ, et al. Review of the research progresses in trajectory clustering methods[J]. Progress in Geography, 2011,30(5):522-534. ] [ Gong X, Pei T, Sun J, et al. Review of the research progresses in trajectory clustering methods[J]. Progress in Geography, 2011,30(5):522-534. ]

    [40] 刘文凯, 唐建波, 蔡建南, 等. 面向城市交通应用的移动对象聚类算法比较研究[J]. 地理与地理信息科学, 2016,32(6):69-74. [ Liu WK, Tang JB, Cai JN, et al. Algorithm comparison for clustering of moving objects in traffic system[J]. Geography and Geo-information Science, 2016,32(6):69-74. ] [ Liu W K, Tang J B, Cai J N, et al. Algorithm comparison for clustering of moving objects in traffic system[J]. Geography and Geo-information Science, 2016,32(6):69-74. ]

    [41] Data mining: Concepts and techniques, third edition[M]. Morgan Kaufman, San Francisco(2012).

    [42] 邓敏, 石岩, 龚健雅, 等. 时空异常探测方法研究综述[J]. 地理与地理信息科学, 2016,32(6):43-50. [ DengM, ShiY, Gong JY, et al. A summary of spatio-temporal outlier detection[J]. Geography and Geo-Information Science, 2016,32(6):43-50. ] [ Deng M, Shi Y, Gong J Y, et al. A summary of spatio-temporal outlier detection[J]. Geography and Geo-Information Science, 2016,32(6):43-50. ]

    [43] et alOn the evaluation of unsupervised outlier detection: Measures, datasets, and an empirical study[J]. Data Mining and Knowledge Discovery, 30, 891-927(2016).

    [44] Identification of outliers[M]. London: Chapman and Hall(1980).

    [45] A unified approach to detecting spatial outliers[J]. Geo-informatica, 7, 139-166(2003).

    [46] A multiscale approach for spatio-temporal outlier detection[J]. Transactions in GIS, 10, 253-263(2006).

    [47] Algorithms for mining distance-based outliers in large datasets[C]. Proceedings of the International Conference on Very Large Data Bases, 98, 392-403(1998).

    [48] et alLOF: Identifying density based local outliers[C]. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 29, 93-104(2000).

    [49] et alAdaptive detection of spatial point event outliers using multilevel constrained delaunay triangulation[J]. Computers, Environment and Urban Systems, 59, 164-183(2016).

    [50] SLOM: A new measure for local spatial outliers[J]. Knowledge & Information Systems, 9, 412-429(2006).

    [51] et alOn detecting spatial outliers[J]. Geo-informatica, 12, 455-475(2008).

    [52] 邓敏, 刘启亮, 李光强. 采用聚类技术探测空间异常[J]. 遥感学报, 2010,14(5):944-958. [ DengM, Liu QL, Li GQ. Spatial outlier detection method based on spatial clustering[J]. Journal of Remote Sensing, 2010,14(5):944-958. ] [ Deng M, Liu Q L, Li G Q. Spatial outlier detection method based on spatial clustering[J]. Journal of Remote Sensing, 2010,14(5):944-958. ]

    [53] et alA graph-based approach to detect abnormal spatial points and regions[J]. International Journal on Artificial Intelligence Tools, 20, 721-751(2011).

    [54] et alA spatial anomaly points and regions detection method using multi-constrained graphs and local density[J]. Transactions in GIS, 21, 376-405(2017).

    [55] Trajectory outlier detection: A partition-and-detect framework[C]. Proceedings of the IEEE International Conference on Data Engineering, 140-149(2008).

    [56] 毛嘉莉, 金澈清, 章志刚, 等. 轨迹大数据异常检测:研究进展及系统框架[J]. 软件学报, 2017,28(1):17-34. [ Mao JL, Jin CQ, Zhang ZG, et al. Anomaly detection for trajectory big data: Advancements and framework[J]. Journal of Software, 2017,28(1):17-34. ] [ Mao J L, Jin C Q, Zhang Z G, et al. Anomaly detection for trajectory big data: Advancements and framework[J]. Journal of Software, 2017,28(1):17-34. ]

    [57] Spatio-temporal outlier detection in large databases[J]. Journal of Computering and Information Technology, 14, 291-297(2006).

    [58] Spatio-temporal outlier detection in precipitation data[C]. Proceedings of the International Workshop on Knowledge Discovery from Sensor Data. Springer, Berlin, Heidelberg, 115-133(2008).

    [59] 刘启亮, 邓敏, 王佳璆, 等. 时空一体化框架下时空异常探测[J]. 遥感学报, 2011,15(3):457-474. [ Liu QL, DengM, Wang JQ, et al. Spatio-temporal outliers detection within the space-time framework[J]. Journal of Remote Sensing, 2011,15(3):457-474. ] [ Liu Q L, Deng M , Wang J Q, et al. Spatio-temporal outliers detection within the space-time framework[J]. Journal of Remote Sensing, 2011,15(3):457-474. ]

    [60] A fuzzy index for detecting spatiotemporal outliers[J]. Geo-informatica, 16, 597-619(2012).

    [61] et alDetecting localized homogeneous anomalies over spatio-temporal data[J]. Data Mining & Knowledge Discovery, 28, 1480-1502(2014).

    [62] Comparison of local outlier detection techniques in spatial multivariate data[J]. Data Mining & Knowledge Discovery, 31, 1-29(2017).

    [63] et alOutlier detection for temporal data: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 26, 2250-2267(2014).

    [64] et alDetecting anomalies in spatio-temporal flow data by constructing dynamic neighbourhoods[J]. Computers, Environment and Urban Systems, 67, 80-96(2018).

    [65] Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection[J]. Data Mining & Knowledge Discovery, 28, 190-237(2014).

    [66] On detecting spatial categorical outliers[J]. GeoInformatica, 18, 501-536(2014).

    [67] Cross-outlier detection[C]. Proceedings of the International Symposium on Spatial and Temporal Databases. Springer, Berlin, Heidelberg, 199-213(2003).

    [68] Multi-domain anomaly detection in spatial datasets[J]. Knowledge & Information Systems, 36, 749-788(2013).

    [69] A novel spatial outlier detection technique[J]. Communication in Statistics-Theory and Methods, 47, 247-257(2018).

    [70] Detecting collective anomalies from multiple spatio-temporal datasets across different domains[C]. Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 1-10(2015).

    [71] Abnormal pattern prediction: Detecting fraudulent insurance property claims with semi-supervised machine-learning[J]. Data Science Journal, 18, 1-15(2019).

    [72] Fast algorithms for mining association rules[C]. Proceedings of the 20 th International Conference on Very Large Data Bases. Santiago, Chile, 1215, 487-499(1994).

    [73] Co-location rules mining: A summary of results[C]. Proceedings of the Spatio-Temporal Symposium on Databases(2001).

    [74] Discovery of spatial association rules in geographic information databases[C]. Proceedings of the International Symposium on Spatial Databases. Springer Berlin Heidelberg, 47-66(1995).

    [75] Spatial association rules mining methods based on voronoi diagram[J]. Geomatics and Information Science of Wuhan University, 33, 1242-1245(2008).

    [76] 田晶, 王一恒, 颜芬, 等. 一种网络空间现象同位模式挖掘的新方法[J]. 武汉大学学报·信息科学版, 2015,40(5):652-660. [ TianJ, Wang YH, YanF, et al. A new method for mining co-location patterns between network spatial phenomena[J]. Geomatics and Information Science of Wuhan University, 2015,40(5):652-660. ] [ Tian J,Wang Y H, Yan F, et al. A new method for mining co-location patterns between network spatial phenomena[J]. Geomatics and Information Science of Wuhan University, 2015,40(5):652-660. ]

    [77] Discovering spatial co-location patterns: A summary of results[C]. Proceedings of the International Symposium on Spatial and Temporal Databases. Springer, Berlin, Heidelberg, 236-256(2001).

    [78] Discovering colocation patterns from spatial data sets: A general approach[J]. IEEE Transactions on Knowledge & Data Engineering, 16, 1472-1485(2004).

    [79] et alMixed-drove spatio-temporal co-occurence pattern mining: A summary of results[C]. Proceedings of the Sixth International Conference on Data Mining (ICDM 2006). IEEE, 119-128(2006).

    [80] et alMining at most top-k% mixed-drove spatio-temporal co-occurrence patterns: a summary of results[C]. Proceedings of the 2007 IEEE 23 rd International Conference on Data Engineering Workshop. IEEE, 565-574(2007).

    [81] A framework for mining sequential patterns from spatio-temporal event data sets[J]. IEEE Transactions on Knowledge and Data Engineering, 20, 433-448(2008).

    [82] et alCascading spatio-temporal pattern discovery[J]. IEEE Transactions on Knowledge and Data Engineering, 24, 1977-1992(2012).

    [83] et alSpatial co-location pattern mining of facility points-of-interest improved by network neighborhood and distance decay effects[J]. International Journal of Geographical Information Science, 31, 280-296(2016).

    [84] Zonal co-location pattern discovery with dynamic parameters[C]. Proceedings of the Seventh International Conference on Data Mining (ICDM 2007). IEEE, 433-438(2007).

    [85] et alMining regional co-location patterns with kNNG[J]. Journal of Intelligent Information Systems, 42, 485-505(2014).

    [86] et alFinding regional co-location patterns for sets of continuous variables in spatial datasets[C]. Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 30(2008).

    [87] et alA neighborhood graph based approach to regional co-location pattern discovery: a summary of results[C]. Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, 122-132(2011).

    [88] Statistics for spatio-temporal data[J]. Chance, 27, 64(2011).

    [89] A three-stage iterative procedure for space-time modeling[J]. Technometrics, 22, 35-47(1980).

    [90] Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 28, 281-298(1996).

    [91] Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 24, 383-401(2010).

    [92] et alHeterogeneous space-time artificial neural networks for space-time series prediction[J]. Transactions in GIS, 22, 183-201(2018).

    [93] Accommodating spatial associations in DRNN for space-time analysis[J]. Computers, Environment and Urban Systems, 33, 409-418(2009).

    [94] Geographically weighted extreme learning machine: A method for space-time prediction[J]. Geographical Analysis, 49, 433-450(2017).

    [95] et alPredicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 259, 147-166(2018).

    [96] 李小文, 曹春香, 张颢. 尺度问题研究进展[J]. 遥感学报, 2009,13(s1):12-20. [ Li XW, Cao CX, ZhangH. Progress in scale research[J]. Journal of Remote Sensing, 2009,13(s1):12-20. ] [ Li X W, Cao C X, Zhang H. Progress in scale research[J]. Journal of Remote Sensing, 2009,13(s1):12-20. ]

    [97] Scale in GIS: An overview[J]. Geomorphology, 130, 5-9(2011).

    [98] 孙庆先, 李茂堂, 路京选, 等. 地理空间数据的尺度问题及其研究进展[J]. 地理与地理信息科学, 2007,23(4):53-56. [ Sun QX, Li MT, Lu JX, et al. Scale issue and its research progress of geospatial data[J]. Geography and Geo-Information Science, 2007,23(4):53-56. ] [ Sun Q X, Li M T, Lu J X, et al. Scale issue and its research progress of geospatial data[J]. Geography and Geo-Information Science, 2007,23(4):53-56. ]

    [99] Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 603-619(2002).

    [100] 李志林, 刘启亮, 唐建波. 尺度驱动的空间聚类理论[J]. 测绘学报, 2017,46(10):1534-1548. [ Li ZL, Liu QL, Tang JB. Towards a scale-driven theory for spatial clustering[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1534-1548. ] [ Li Z L, Liu Q L, Tang J B. Towards a scale-driven theory for spatial clustering[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1534-1548. ]

    [101] et alModeling the effect of scale on clustering of spatial points[J]. Computers, Environment and Urban Systems, 52, 81-92(2015).

    [102] 唐建波, 刘启亮, 邓敏, 等. 空间层次聚类显著性判别的重排检验方法[J]. 测绘学报, 2016,45(2):233-240. [ Tang JB, Liu QL, DengM, et al. A permutation test for identifying significant clusters in spatial dataset[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(2):233-240. ] [ Tang J B, Liu Q L, Deng M, et al. A permutation test for identifying significant clusters in spatial dataset[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(2):233-240. ]

    [103] et alA graph-based approach for detecting spatial cross-outliers from two types of spatial point events[J]. Computers, Environment and Urban Systems, 72, 88-103(2018).

    [104] et alA non-parametric statistical test method to detect significant cross-outliers in spatial points[J]. Transactions in GIS, 22, 1462-1483(2018).

    [105] et alNonparametric significance test for discovery of network-constrained spatial co-location patterns[J]. Geographical Analysis, 51, 3-22(2019).

    [106] Spatial analysis: a guide for ecologists[M]. Cambridge University Press(2005).

    [107] et alA statistical method for detecting spatiotemporal co-occurrence patterns[J]. International Journal of Geographical Information Science, 33, 967-990(2019).

    [108] Statistical approach to problems of cosmology[J]. Journal of the Royal Statistical Society: Series B (Methodological), 20, 1-29(1958).

    [109] et alMulti-scale approach to mining significant spatial co-location patterns[J]. Transactions in GIS, 21, 1023-1039(2017).

    [110] A systematic comparison of summary characteristics for quantifying point patterns in ecology[J]. Ecography, 36, 92-103(2013).

    [111] et alAdaptive detection of statistically significant regional spatial co-location patterns[J]. Computers, Environment and Urban Systems, 68, 53-63(2018).

    [112] et alPrediction of hourly PM2.5 using a space-time support vector regression model[J]. Atmospheric Environment, 181, 12-19(2018).

    [113] A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 67, 250-256(2016).

    [114] et alParallel processing over spatial-temporal datasets from geo, bio, climate and social science communities: a research roadmap[C]. Proceedings of the 2017 IEEE International Congress on Big Data (Bigdata Congress). IEEE, 232-250(2017).

    [115] 孙中伟, 路紫. 流空间基本性质的地理学透视[J]. 地理与地理信息科学, 2005,21(1):109-112. [ Sun ZW, LuZ. A geographical perspective to the elementary nature of space of flows[J]. Geography and Geo-Information Science, 2005,21(1):109-112. ] [ Sun Z W, Lu Z. A geographical perspective to the elementary nature of space of flows[J]. Geography and Geo-Information Science, 2005,21(1):109-112. ]

    [116] 程昌秀, 史培军, 宋长青, 等. 地理大数据为地理复杂性研究提供新机遇[J]. 地理学报, 2018,73(8):1397-1406. [ Cheng CX, Shi PJ, Song CQ, et al. Geographic big-data: A new opportunity for geography complexity study[J]. Acta Geographica Sinica, 2018,73(8):1397-1406. ] [ Cheng C X , Shi P J, Song C Q , et al. Geographic big-data: A new opportunity for geography complexity study[J]. Acta Geographica Sinica, 2018,73(8):1397-1406. ]

    Min DENG, Jiannan CAI, Wentao YANG, Jianbo TANG, Xuexi YANG, Qiliang LIU, Yan SHI. Spatio-temporal Analysis Methods for Multi-modal Geographic Big Data[J]. Journal of Geo-information Science, 2020, 22(1): 41
    Download Citation