• Photonics Research
  • Vol. 13, Issue 3, 737 (2025)
Yuxuan Xie1,2, Corey A. McDonald2, Theodore J. Morin2, Zhican Zhou1..., Jonathan Peters2, John E. Bowers2 and Yating Wan1,*|Show fewer author(s)
Author Affiliations
  • 1Integrated Photonics Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • 2Institute of Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • show less
    DOI: 10.1364/PRJ.550770 Cite this Article Set citation alerts
    Yuxuan Xie, Corey A. McDonald, Theodore J. Morin, Zhican Zhou, Jonathan Peters, John E. Bowers, Yating Wan, "High-efficiency tunable lasers hybrid-integrated with silicon photonics at 2.0 μm," Photonics Res. 13, 737 (2025) Copy Citation Text show less
    References

    [1] C. Xiang, W. Jin, D. Huang. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 8200515(2022).

    [2] N. Margalit, C. Xiang, S. M. Bowers. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [3] Z. Zhou, X. Ou, Y. Fang. Prospects and applications of on-chip lasers. eLight, 3, 1(2023).

    [4] X. Ou, Z. Zhou, W. He. On-chip lasers in silicon photonics: pathways to integration and applications. IEEE Photonics Conference (IPC), 1-2(2023).

    [5] C. Shang, Y. Wan, J. Selvidge. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photonics, 8, 2555-2566(2021).

    [6] A. Spott, E. J. Stanton, N. Volet. Heterogeneous integration for mid-infrared silicon photonics. IEEE J. Sel. Top. Quantum Electron., 23(2017).

    [7] R. Wang, A. Vasiliev, M. Muneeb. III–V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2–4 μm wavelength range. Sensors, 17, 1788(2017).

    [8] A. Malik, A. Spott, E. J. Stanton. Integration of mid-infrared light sources on silicon-based waveguide platforms in 3.5–4.7 μm wavelength range. IEEE J. Sel. Top. Quantum Electron., 25(2019).

    [9] G. Roelkens, U. D. Dave, A. Gassenq. Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE J. Sel. Top. Quantum Electron., 20, 394-404(2014).

    [10] I. E. Gordon, L. S. Rothman, R. J. Hargreaves. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 277, 107949(2022).

    [11] S. Ishii, K. Mizutani, H. Fukuoka. Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device. Appl. Opt., 49, 1809-1817(2010).

    [12] R. Wang, S. Sprengel, G. Boehm. 2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Opt. Express, 24, 21081-21089(2016).

    [13] R. Wang, S. Sprengel, A. Malik. Heterogeneously integrated III–V-on-silicon 2.3× μm distributed feedback lasers based on a type-II active region. Appl. Phys. Lett., 109, 221111(2016).

    [14] R. Wang, M. Muneeb, S. Sprengel. III-V-on-silicon 2-μm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors. Opt. Express, 24, 8480-8490(2016).

    [15] S. Zlatanovic, J. S. Park, S. Moro. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photonics, 4, 561-564(2010).

    [16] M. A. Foster, A. C. Turner, J. E. Sharping. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [17] D. E. Hagan, A. P. Knights. Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2 μm. J. Opt., 19, 025801(2016).

    [18] J. Li, Y. Liu, Y. Meng. 2-μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photonics Technol. Lett., 30, 471-474(2018).

    [19] D. Liu, H. Wu, D. Dai. Silicon multimode waveguide grating filter at 2 μm. J. Lightwave Technol., 37, 2217-2222(2019).

    [20] W. Cao, D. Hagan, D. J. Thomson. High-speed silicon modulators for the 2 μm wavelength band. Optica, 5, 1055-1062(2018).

    [21] P. T. Lin, H.-Y. G. Lin, Z. Han. Label-free glucose sensing using chip-scale mid-infrared integrated photonics. Adv. Opt. Mater., 4, 1755-1759(2016).

    [22] B. Chen, S. L. Thomsen, R. J. Thomas. Histological and modeling study of skin thermal injury to 2.0 μm laser irradiation. Lasers Surg. Med., 40, 358-370(2008).

    [23] S. Forouhar, R. M. Briggs, C. Frez. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength. Appl. Phys. Lett., 100, 031107(2012).

    [24] L. Shterengas, G. Kipshidze, T. Hosoda. Cascade type-I quantum well GaSb-based diode lasers. Photonics, 3, 27(2016).

    [25] Y. Y. Cao, Y. G. Zhang, Y. Gu. 2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers. Appl. Phys. Lett., 102, 201111(2013).

    [26] T. Hosoda, T. Feng, L. Shterengas. High power cascade diode lasers emitting near 2 μm. Appl. Phys. Lett., 108, 131109(2016).

    [27] R. Wang, S. Sprengel, G. Boehm. Broad wavelength coverage 2.3 μm III-V-on-silicon DFB laser array. Optica, 4, 972-975(2017).

    [28] S. Latkowski, A. Hänsel, P. J. van Veldhoven. Monolithically integrated widely tunable laser source operating at 2 μm. Optica, 3, 1412-1417(2016).

    [29] S.-P. Ojanen, J. Viheriälä, M. Cherchi. GaSb diode lasers tunable around 2.6 μm using silicon photonics resonators or external diffractive gratings. Appl. Phys. Lett., 116, 081105(2020).

    [30] S.-P. Ojanen, J. Viheriälä, N. Zia. Widely tunable (2.47–2.64 μm) hybrid laser based on GaSb/GaInAsSb quantum-wells and a low-loss Si3N4 photonic integrated circuit. Laser Photonics Rev., 17, 2201028(2023).

    [31] C. Xiang, W. Jin, J. E. Bowers. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics Res., 10, A82-A96(2022).

    [32] M. A. Tran, D. Huang, J. E. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 4, 111101(2019).

    [33] R. Wang, A. Malik, I. Simonyte. Compact GaSb/silicon-on-insulator 2.0× μm widely tunable external cavity lasers. Opt. Express, 24, 28977-28986(2016).

    [34] E. J. Stanton, M. J. R. Heck, J. Bevington. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. Opt. Express, 23, 11272-11283(2015).

    [35] P. Kaur, A. Boes, G. Ren. Hybrid and heterogeneous photonic integration. APL Photonics, 6, 061102(2021).

    Yuxuan Xie, Corey A. McDonald, Theodore J. Morin, Zhican Zhou, Jonathan Peters, John E. Bowers, Yating Wan, "High-efficiency tunable lasers hybrid-integrated with silicon photonics at 2.0 μm," Photonics Res. 13, 737 (2025)
    Download Citation