• Chinese Journal of Lasers
  • Vol. 48, Issue 23, 2308001 (2021)
Huiya Liu1, Ning Kang1、*, Shengzhe Ji1, Yao Zhao1, Shenlei Zhou1, and Anle Lei1、2
Author Affiliations
  • 1Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL202148.2308001 Cite this Article Set citation alerts
    Huiya Liu, Ning Kang, Shengzhe Ji, Yao Zhao, Shenlei Zhou, Anle Lei. Characterization of Suprathermal Electrons Produced by SRS and TPD[J]. Chinese Journal of Lasers, 2021, 48(23): 2308001 Copy Citation Text show less
    References

    [1] Fraley G S, Mason R J. Preheat effects on microballoon laser-fusion implosions[J]. Physical Review Letters, 35, 520-523(1975).

    [2] Yaakobi B, Pelah I, Hoose J. Preheat by fast electrons in laser-fusion experiments[J]. Physical Review Letters, 37, 836-839(1976).

    [3] Qi L Y, Jiang X H, Zhao X W et al. Studies on the production and suppression mechanism of the hot electrons produced by short wavelength laser[J]. Acta Physica Sinica, 49, 492-496(2000).

    [4] Craxton R S, Anderson K S, Boehly T R et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 22, 110501(2015).

    [5] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [6] Perkins L J, Betti R, LaFortune K N et al. Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility[J]. Physical Review Letters, 103, 045004(2009).

    [7] Theobald W, Nora R, Seka W et al. Spherical strong-shock generation for shock-ignition inertial fusion[J]. Physics of Plasmas, 22, 056310(2015).

    [8] Kruer W L. The physics of laser plasma interactions[M](1988).

    [9] Estabrook K, Kruer W L, Lasinski B F. Heating by Raman backscatter and forward scatter[J]. Physical Review Letters, 45, 1399-1403(1980).

    [10] Langdon A B, Lasinski B F, Kruer W L. Nonlinear saturation and recurrence of the two-plasmon decay instability[J]. Physical Review Letters, 43, 133-136(1979).

    [11] Bezzerides B, Gitomer S J, Forslund D W. Randomness, Maxwellian distributions, and resonance absorption[J]. Physical Review Letters, 44, 651-654(1980).

    [12] Ebrahim N A, Baldis H A, Joshi C et al. Hot electron generation by the two-plasmon decay instability in the laser-plasma interaction at 10.6 μm[J]. Physical Review Letters, 45, 1179-1182(1980).

    [13] Villeneuve D M, Keck R L, Afeyan B B et al. Production of hot electrons by two-plasmon decay instability in UV laser plasmas[J]. Physics of Fluids, 27, 721-725(1984).

    [14] Liu H Y, Kang N, Zhou S L et al. Emission properties of suprathermal electrons produced by laser-plasma interactions[J]. Laser and Particle Beams, 35, 663-669(2017).

    [15] Cristoforetti G, Antonelli L, Atzeni S et al. Measurements of parametric instabilities at laser intensities relevant to strong shock generation[J]. Physics of Plasmas, 25, 012702(2018).

    [16] Rosenberg M, Solodov A, Myatt J et al. Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments[J]. Physical Review Letters, 120, 055001(2018).

    [17] Zhu J Q, Zhu J, Li X C et al. Status and development of high-power laser facilities at the NLHPLP[J]. High Power Laser Science and Engineering, 6, e55(2018).

    [18] Zhu J Q, Chen S H, Zheng Y X et al. Review on development of Shenguang-Ⅱ laser facility[J]. Chinese Journal of Lasers, 46, 0100002(2019).

    [19] Lin W H, Zhu J Q, Ren L. Advances in target alignment and beam-target coupling technologies of laser fusion facility[J]. Chinese Journal of Lasers, 47, 0400001(2020).

    [20] Liu H Y, An H H, Shen J et al. Design and calibration of hot-electron spectrometer array for angle-resolved measurement[J]. Review of Scientific Instruments, 88, 053507(2017).

    [21] Vu H X, DuBois D F, Russell D A et al. The reduced-description particle-in-cell model for the two plasmon decay instability[J]. Physics of Plasmas, 17, 072701(2010).

    [22] Myatt J F, Zhang J, Short R W et al. Multiple-beam laser-plasma interactions in inertial confinement fusion[J]. Physics of Plasmas, 21, 055501(2014).

    [23] Rousseaux C, Amiranoff F, Labaune C et al. Suprathermal and relativistic electrons produced in laser-plasma interaction at 0.26, 0.53, and 1.05 μm laser wavelength[J]. Physics of Fluids B: Plasma Physics, 4, 2589-2595(1992).

    [24] Kang N, Liu H Y, Zhao Y et al. Effects of continuous phase plate on plasma corona homogeneity and laser-plasma instabilities in experiments with three target materials[J]. Plasma Physics and Controlled Fusion, 62, 055007(2020).

    [25] Simon A, Short R W, Williams E A et al. On the inhomogeneous two-plasmon instability[J]. Physics of Fluids, 26, 3107-3118(1983).

    Huiya Liu, Ning Kang, Shengzhe Ji, Yao Zhao, Shenlei Zhou, Anle Lei. Characterization of Suprathermal Electrons Produced by SRS and TPD[J]. Chinese Journal of Lasers, 2021, 48(23): 2308001
    Download Citation