• Journal of Atmospheric and Environmental Optics
  • Vol. 3, Issue 4, 276 (2008)
Xiao-feng DU, Xin-Lu CHENG*, and Yi-chao Lü
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    DU Xiao-feng, CHENG Xin-Lu, Lü Yi-chao. Theoretical Calculation of Line Intensities of 000010-000000 and 100000-000000 Transition Bands of Formaldehyde at High Temperature[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(4): 276 Copy Citation Text show less
    References

    [1] Adewuyi Y G, Cho S Y, Tsay R P, et al. Importance of formaldehyde in cloud chemistry[J].Atmospheric Environment, 1984, 18(11): 2413-2420.

    [2] Chen Dong, Liu Wenqing, Zhang Yujun, et al. Difference frequency generation based midinfrared system for high sensitive detection of atmospheric gas[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(2): 126-130(in Chinese).

    [3] Peng Fumin, Xie Pinhua, Zhang Yinghua, et al.Formaldehyde measurement in atmosphere with DOAS method[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(1): 47-51(in Chinese).

    [4] Tuazon E C, Winer A M, Pitts Jr J N. Trace pollutant concentrations in a multiday smog episode in the California south coast air basin by long path length Fourier transform infrared spectroscopy[J]. Environmental Science and Technology, 1981,15(10): 1232-1237.

    [5] Crovisier J. Spectra of comets: infrared and ratio regions[C]. in: Sauval A J, Blomme R, Grevesse N(Eds.), ASP Conference Series, 1995. 81.

    [6] Perrin A, Keller F, Flaud J M. New analysis of the ν2, ν3, ν4 and ν6 bands of formaldehyde H212C160 line positions and intensities in the 5~10 μm spectral region[J]. Journal of Molecular Spectroscopy,2003, 221(2): 192-198.

    [7] Cantrell C A, Davidson J A, McDaniel A H, et al. Temperature-dependent formaldehyde cross sections in the near-ultraviolet spectral region[J]. Journal of Physical Chemistry, 1990, 94(10):3902-3908.

    [8] Staak M, Gash E W, Venables D S, et al. The rotationally-resolved absorption spectrum of formaldehyde from 6547 to 6804 cm-1[J]. Journal of Molecular Spectroscopy, 2005, 229(1): 115-121.

    [9] Tipton T, Choe J I, Kukolich S G, et al. Fourier transform spectroscopy on the 3ν2, 2ν2+ν6 and ν3+ν5 bands of H2CO[J]. Journal of Molecular Spectroscopy, 1985, 114(2): 239-256.

    [10] Claveau C, Teffo J L, Hurtmans D, et al. Line positions and absolute intensities in the laser bands of Carbon-12 Oxygen-17 isotopic species of Carbon Dioxide[J]. Journal of Molecular Spectroscopy, 1999, 193(1): 15-32.

    [11] Rothman L S, Jacquemart D, Barbe A, et al. The HITRAN 2004 molecular spectroscopic database[J]. JQSRT, 2005, 96: 139-204.

    [12] Rachet F, Margottin-Maclou M, El Azizi M, et al. Linestrength measurements for the 3000←0200, 1001←0110, and 1310←0000 Transitions of14N(16,2)O(2600-3101 cm-1)[J]. Journal of Molecular Spectroscopy, 1994, 166(1): 79-87.

    [13] Chackerian C Jr, Valero F P J. Absolute intensity measurement of the 4-0 vibration-rotation band of carbon monoxide[J]. Journal of Molecular Spectroscopy, 1976, 62(3): 338-345.

    [14] Jacquemart D, Mandin J Y, Dana V, et al. Multispectrum fitting measurements of line parameters for 5 μm cold bands of acetylene[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 75(4): 397-422.

    [15] Vander Auwera J. Absolute intensities measurements in the ν4+ν5 band of 12C2H2: analysis of herman-wallis effects and forbidden transitions[J]. Journal of Molecular Spectroscopy, 2000,201(1): 143-150.

    DU Xiao-feng, CHENG Xin-Lu, Lü Yi-chao. Theoretical Calculation of Line Intensities of 000010-000000 and 100000-000000 Transition Bands of Formaldehyde at High Temperature[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(4): 276
    Download Citation