• Chinese Journal of Lasers
  • Vol. 50, Issue 1, 0113002 (2023)
Peng Huang1, Yongyou Zhang2, and Haizheng Zhong1、*
Author Affiliations
  • 1MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/CJL221240 Cite this Article Set citation alerts
    Peng Huang, Yongyou Zhang, Haizheng Zhong. Biexciton Emission in Semiconductor Quantum Dots[J]. Chinese Journal of Lasers, 2023, 50(1): 0113002 Copy Citation Text show less
    References

    [1] Lampert M A. Mobile and immobile effective-mass-particle complexes in nonmetallic solids[J]. Physical Review Letters, 1, 450-453(1958).

    [2] Mysyrowicz A, Grun J B, Levy R et al. Excitonic molecule in CuCl[J]. Physics Letters A, 26, 615-616(1968).

    [3] Souma H, Goto T, Ohta T et al. Formation and radiative recombination of free excitonic molecule in CuCl by ruby laser excitation[J]. Journal of the Physical Society of Japan, 29, 697-705(1970).

    [4] Klingshirn C, Haug H. Optical properties of highly excited direct gap semiconductors[J]. Physics Reports, 70, 315-398(1981).

    [5] Cho A Y, Arthur J R. Molecular beam epitaxy[J]. Progress in Solid State Chemistry, 10, 157-191(1975).

    [6] Leonard D, Krishnamurthy M, Reaves C M et al. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces[J]. Applied Physics Letters, 63, 3203-3205(1993).

    [7] Steigerwald M L, Brus L E. Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters[J]. Annual Review of Materials Science, 19, 471-495(1989).

    [8] Efros A L, Brus L E. Nanocrystal quantum dots: from discovery to modern development[J]. ACS Nano, 15, 6192-6210(2021).

    [9] Miller R C, Kleinman D A, Gossard A C et al. Biexcitons in GaAs quantum wells[J]. Physical Review B, 25, 6545-6547(1982).

    [10] Kim J C, Wake D R, Wolfe J P. Thermodynamics of biexcitons in a GaAs quantum well[J]. Physical Review B, 50, 15099-15107(1994).

    [11] Lovering D J, Phillips R T, Denton G J et al. Resonant generation of biexcitons in a GaAs quantum well[J]. Physical Review Letters, 68, 1880-1883(1992).

    [12] Brunner K, Abstreiter G, Böhm G et al. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure[J]. Physical Review Letters, 73, 1138-1141(1994).

    [13] Gammon D, Snow E S, Shanabrook B V et al. Fine structure splitting in the optical spectra of single GaAs quantum dots[J]. Physical Review Letters, 76, 3005-3008(1996).

    [14] Dekel E, Gershoni D, Ehrenfreund E et al. Multiexciton spectroscopy of a single self-assembled quantum dot[J]. Physical Review Letters, 80, 4991-4994(1998).

    [15] Klimov V I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals[J]. Annual Review of Physical Chemistry, 58, 635-673(2007).

    [16] García de Arquer F P, Talapin D V, Klimov V I et al. Semiconductor quantum dots: technological progress and future challenges[J]. Science, 373, eaaz8541(2021).

    [17] Achermann M, Hollingsworth J A, Klimov V I. Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals[J]. Physical Review B, 68, 245302(2003).

    [18] Louyer Y, Biadala L, Trebbia J B et al. Efficient biexciton emission in elongated CdSe/ZnS nanocrystals[J]. Nano Letters, 11, 4370-4375(2011).

    [19] Fernée M J, Tamarat P, Lounis B. Cryogenic single nanocrystal spectroscopy: reading the spectral fingerprint of individual CdSe quantum dots[J]. The Journal of Physical Chemistry Letters, 4, 609-618(2013).

    [20] Rodt S, Heitz R, Schliwa A et al. Repulsive exciton-exciton interaction in quantum dots[J]. Physical Review B, 68, 035331(2003).

    [21] Thompson R M, Stevenson R M, Shields A J et al. Single-photon emission from exciton complexes in individual quantum dots[J]. Physical Review B, 64, 201302(2001).

    [22] Moreau E, Robert I, Manin L et al. Quantum cascade of photons in semiconductor quantum dots[J]. Physical Review Letters, 87, 183601(2001).

    [23] Nanda J, Ivanov S A, Achermann M et al. Light amplification in the single-exciton regime using exciton-exciton repulsion in type-II nanocrystal quantum dots[J]. The Journal of Physical Chemistry C, 111, 15382-15390(2007).

    [24] Klimov V I, Ivanov S A, Nanda J et al. Single-exciton optical gain in semiconductor nanocrystals[J]. Nature, 447, 441-446(2007).

    [25] Dalgarno P A, Smith J M, McFarlane J et al. Coulomb interactions in single charged self-assembled quantum dots: radiative lifetime and recombination energy[J]. Physical Review B, 77, 245311(2008).

    [26] Wimmer M, Nair S V, Shumway J. Biexciton recombination rates in self-assembled quantum dots[J]. Physical Review B, 73, 165305(2006).

    [27] Wang H, Hu H, Chung T H et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability[J]. Physical Review Letters, 122, 113602(2019).

    [28] Fisher B, Caruge J M, Zehnder D et al. Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals[J]. Physical Review Letters, 94, 087403(2005).

    [29] García-Santamaría F, Chen Y F, Vela J et al. Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance[J]. Nano Letters, 9, 3482-3488(2009).

    [30] Klimov V I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication[J]. Annual Review of Condensed Matter Physics, 5, 285-316(2014).

    [31] Park Y S, Bae W K, Padilha L A et al. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy[J]. Nano Letters, 14, 396-402(2014).

    [32] Shulenberger K E, Bischof T S, Caram J R et al. Multiexciton lifetimes reveal triexciton emission pathway in CdSe nanocrystals[J]. Nano Letters, 18, 5153-5158(2018).

    [33] Chamarro M, Gourdon C, Lavallard P et al. Enhancement of electron-hole exchange interaction in CdSe nanocrystals: a quantum confinement effect[J]. Physical Review B, 53, 1336-1342(1996).

    [34] Accanto N, Masia F, Moreels I et al. Engineering the spin-flip limited exciton dephasing in colloidal CdSe/CdS quantum dots[J]. ACS Nano, 6, 5227-5233(2012).

    [35] McGuire J A, Sykora M, Joo J et al. Apparent versus true carrier multiplication yields in semiconductor nanocrystals[J]. Nano Letters, 10, 2049-2057(2010).

    [36] Brus L E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites[J]. The Journal of Chemical Physics, 79, 5566-5571(1983).

    [37] Efros A L, Rosen M. The eletronic structure of semiconductor nanocrystals[J]. Annual Review of Materials Research, 30, 475(2000).

    [38] Stevenson R M, Young R J, Atkinson P et al. A semiconductor source of triggered entangled photon pairs[J]. Nature, 439, 179-182(2006).

    [39] Akopian N, Lindner N H, Poem E et al. Entangled photon pairs from semiconductor quantum dots[J]. Physical Review Letters, 96, 130501(2006).

    [40] Orieux A, Versteegh M A M, Jöns K D et al. Semiconductor devices for entangled photon pair generation: a review[J]. Reports on Progress in Physics, 80, 076001(2017).

    [41] Huber D, Reindl M, Aberl J et al. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review[J]. Journal of Optics, 20, 073002(2018).

    [42] Müller M, Bounouar S, Jöns K D et al. On-demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics, 8, 224-228(2014).

    [43] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 59, 2044-2046(1987).

    [44] Ghosh R, Mandel L. Observation of nonclassical effects in the interference of two photons[J]. Physical Review Letters, 59, 1903-1905(1987).

    [45] Santori C, Fattal D, Vučković J et al. Indistinguishable photons from a single-photon device[J]. Nature, 419, 594-597(2002).

    [46] Wang H, Duan Z C, Li Y H et al. Near-transform-limited single photons from an efficient solid-state quantum emitter[J]. Physical Review Letters, 116, 213601(2016).

    [47] Wang H, Qin J, Ding X et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space[J]. Physical Review Letters, 123, 250503(2019).

    [48] Beattie A R, Landsberg P T. Auger effect in semiconductors[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 249, 16-29(1959).

    [49] Takeshima M. Auger recombination in InAs, GaSb, InP, and GaAs[J]. Journal of Applied Physics, 43, 4114-4119(1972).

    [50] Chepic D I, Efros A L, Ekimov A I et al. Auger ionization of semiconductor quantum drops in a glass matrix[J]. Journal of Luminescence, 47, 113-127(1990).

    [51] Wang L W, Califano M, Zunger A et al. Pseudopotential theory of Auger processes in CdSe quantum dots[J]. Physical Review Letters, 91, 056404(2003).

    [52] Park Y S, Bae W K, Pietryga J M et al. Auger recombination of biexcitons and negative and positive trions in individual quantum dots[J]. ACS Nano, 8, 7288-7296(2014).

    [53] Wu K F, Lim J, Klimov V I. Superposition principle in Auger recombination of charged and neutral multicarrier states in semiconductor quantum dots[J]. ACS Nano, 11, 8437-8447(2017).

    [54] Pietryga J M, Park Y S, Lim J et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 116, 10513-10622(2016).

    [55] Robel I, Gresback R, Kortshagen U et al. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals[J]. Physical Review Letters, 102, 177404(2009).

    [56] Stewart J T, Padilha L A, Bae W K et al. Carrier multiplication in quantum dots within the framework of two competing energy relaxation mechanisms[J]. The Journal of Physical Chemistry Letters, 4, 2061-2068(2013).

    [57] Makarov N S, Guo S J, Isaienko O et al. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots[J]. Nano Letters, 16, 2349-2362(2016).

    [58] Li Y L, Ding T, Luo X et al. Biexciton Auger recombination in mono-dispersed, quantum-confined CsPbBr3 perovskite nanocrystals obeys universal volume-scaling[J]. Nano Research, 12, 619-623(2019).

    [59] Philbin J P, Rabani E. Electron-hole correlations govern Auger recombination in nanostructures[J]. Nano Letters, 18, 7889-7895(2018).

    [60] Melnychuk C, Guyot-Sionnest P. Multicarrier dynamics in quantum dots[J]. Chemical Reviews, 121, 2325-2372(2021).

    [61] Schmitt-Rink S, Chemla D S, Miller D A B. Linear and nonlinear optical properties of semiconductor quantum wells[J]. Advances in Physics, 38, 89-188(1989).

    [62] Chow W W, Koch S W[M]. Semiconductor-laser fundamentals: physics of the gain materials(1999).

    [63] Klimov V I, Mikhailovsky A A, Xu S et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 290, 314-317(2000).

    [64] Grim J Q, Christodoulou S, di Stasio F et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells[J]. Nature Nanotechnology, 9, 891-895(2014).

    [65] Yakunin S, Protesescu L, Krieg F et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 6, 8056(2015).

    [66] Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers[J]. IEEE Journal of Quantum Electronics, 22, 1915-1921(1986).

    [67] Klimov V I[M]. Semiconductor and metal nanocrystals: synthesis and electronic and optical properties, 159-214(2004).

    [68] Park Y S, Roh J, Diroll B T et al. Colloidal quantum dot lasers[J]. Nature Reviews Materials, 6, 382-401(2021).

    [69] Liu H, Gong Q H, Chen J J. Colloidal quantum dot lasers and on-chip integration[J]. Chinese Journal of Lasers, 47, 0701004(2020).

    [70] Xiang G H, Jia S Q, Li D P et al. Design and simulation of a colloidal quantum dot vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 48, 1901005(2021).

    [71] Fan F J, Voznyy O, Sabatini R P et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy[J]. Nature, 544, 75-79(2017).

    [72] Lim J, Park Y S, Klimov V I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping[J]. Nature Materials, 17, 42-49(2018).

    [73] Jain A, Voznyy O, Hoogland S et al. Atomistic design of CdSe/CdS core-shell quantum dots with suppressed Auger recombination[J]. Nano Letters, 16, 6491-6496(2016).

    [74] Hou X Q, Kang J, Qin H Y et al. Engineering Auger recombination in colloidal quantum dots via dielectric screening[J]. Nature Communications, 10, 1750(2019).

    [75] Hou X Q, Li Y, Qin H Y et al. Effects of interface-potential smoothness and wavefunction delocalization on Auger recombination in colloidal CdSe-based core/shell quantum dots[J]. The Journal of Chemical Physics, 151, 234703(2019).

    [76] Park Y S, Bae W K, Baker T et al. Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces[J]. Nano Letters, 15, 7319-7328(2015).

    Peng Huang, Yongyou Zhang, Haizheng Zhong. Biexciton Emission in Semiconductor Quantum Dots[J]. Chinese Journal of Lasers, 2023, 50(1): 0113002
    Download Citation