• Chinese Optics Letters
  • Vol. 22, Issue 10, 103602 (2024)
Zhonghong Shi, Houjiao Zhang, and Zhang-Kai Zhou*
Author Affiliations
  • State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    DOI: 10.3788/COL202422.103602 Cite this Article Set citation alerts
    Zhonghong Shi, Houjiao Zhang, Zhang-Kai Zhou, "Strong light–matter coupling between excitons and chiral quasi-bound states in the continuum in van der Waals metasurfaces," Chin. Opt. Lett. 22, 103602 (2024) Copy Citation Text show less
    References

    [1] D. G. Baranov, M. Wersäll, J. Cuadra et al. Novel nanostructures and materials for strong light–matter interactions. ACS Photonics, 5, 24(2018).

    [2] M.-E. Kleemann, R. Chikkaraddy, E. M. Alexeev et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun., 8, 1296(2017).

    [3] D. Zheng, S. Zhang, Q. Deng et al. Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett., 17, 3809(2017).

    [4] Y. Chen, W. Chen, X. Kong et al. Can weak chirality induce strong coupling between resonant states?. Phys. Rev. Lett., 128, 146102(2022).

    [5] Y. Chen, H. Deng, X. Sha et al. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474(2023).

    [6] T. Weber, L. Kühner, L. Sortino et al. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater., 22, 970(2023).

    [7] V. Kravtsov, E. Khestanova, F. A. Benimetskiy et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).

    [8] Y.-W. Lu, W.-J. Zhou, Y. Li et al. Unveiling atom-photon quasi-bound states in hybrid plasmonic-photonic cavity. Nanophotonics, 11, 3307(2022).

    [9] N. Lundt, S. Klembt, E. Cherotchenko et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun., 7, 13328(2016).

    [10] T. Hu, Y. Wang, L. Wu et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons. Appl. Phys. Lett., 110, 051101(2017).

    [11] J. Li, G. Hu, L. Shi et al. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nat. Commun., 12, 6425(2021).

    [12] X. Wang, J. Xin, Q. Ren et al. Plasmon hybridization induced by quasi bound state in the continuum of graphene metasurfaces oriented for high-accuracy polarization-insensitive two-dimensional sensors. Chin. Opt. Lett., 20, 042201(2022).

    [13] I. Epstein, D. Alcaraz, Z. Huang et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science, 368, 1219(2020).

    [14] L. Zhang, R. Gogna, W. Burg et al. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun., 9, 713(2018).

    [15] R. Verre, D. G. Baranov, B. Munkhbat et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol., 14, 679(2019).

    [16] E. Y. Paik, L. Zhang, G. W. Burg et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 576, 80(2019).

    [17] Y. Jiang, H. Wang, S. Wen et al. Resonance coupling in an individual gold nanorod–monolayer WS2 heterostructure: photoluminescence enhancement with spectral broadening. ACS Nano, 14, 13841(2020).

    [18] R. Liu, Z.-K. Zhou, Y.-C. Yu et al. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett., 118, 237401(2017).

    [19] J.-Y. Li, W. Li, J. Liu et al. Room-temperature strong coupling between a single quantum dot and a single plasmonic nanoparticle. Nano Lett., 22, 4686(2022).

    [20] R. Chikkaraddy, B. De Nijs, F. Benz et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127(2016).

    [21] K. Santhosh, O. Bitton, L. Chuntonov et al. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).

    [22] J. Wen, H. Wang, W. Wang et al. Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett., 17, 4689(2017).

    [23] J. Qin, Y.-H. Chen, Z. Zhang et al. Revealing strong plasmon-exciton coupling between nanogap resonators and two-dimensional semiconductors at ambient conditions. Phys. Rev. Lett., 124, 063902(2020).

    [24] Y. M. Qing, H. F. Ma, T. J. Cui. Strong coupling between excitons and guided modes in WS2-based nanostructures. J. Opt. Soc. Am. B, 37, 1447(2020).

    [25] X. Liu, T. Galfsky, Z. Sun et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics, 9, 30(2015).

    [26] X. Zhao, Y. Yan, Z. Cui et al. Realization of strong coupling between 2D excitons and cavity photons at room temperature. Opt. Lett., 45, 6571(2020).

    [27] P. Lodahl, S. Mahmoodian, S. Stobbe et al. Chiral quantum optics. Nature, 541, 473(2017).

    [28] K. Koshelev, S. Lepeshov, M. Liu et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [29] H. Zhang, B. Abhiraman, Q. Zhang et al. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat. Commun., 11, 3552(2020).

    [30] Y. Fan, P. Tonkaev, Y. Wang et al. Enhanced multiphoton processes in perovskite metasurfaces. Nano Lett., 21, 7191(2021).

    [31] R. Verre, D. G. Baranov, B. Munkhbat et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol., 14, 679(2019).

    [32] P. Xie, Q. Ding, Z. Liang et al. Cavity-assisted boosting of self-hybridization between excitons and photonic bound states in the continuum in multilayers of transition metal dichalcogenides. Phys. Rev. B, 107, 075415(2023).

    [33] J. Zhu, F. Wu, Z. Han et al. Strong light–matter interactions in chiral plasmonic–excitonic systems assembled on DNA origami. Nano Lett., 21, 3573(2021).

    [34] W. Feng, J.-Y. Kim, X. Wang et al. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci. Adv., 3, e1601159(2017).

    [35] Z. Huang, Y. Zheng, J. Li et al. High-resolution metalens imaging polarimetry. Nano Lett., 23, 10991(2023).

    [36] J.-S. Tang, L. Tang, K. Xia. Three methods for the single-photon transport in a chiral cavity quantum electrodynamics system. Chin. Opt. Lett., 20, 062701(2022).

    [37] M. V. Gorkunov, A. A. Antonov, Y. S. Kivshar. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett., 125, 093903(2020).

    [38] M. V. Gorkunov, A. A. Antonov, V. R. Tuz et al. Bound states in the continuum underpin near-lossless maximum chirality in dielectric metasurfaces. Adv. Opt. Mater., 9, 2100797(2021).

    [39] B. Munkhbat, D. G. Baranov, M. Stührenberg et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics, 6, 139(2019).

    [40] B. Munkhbat, P. Wróbel, T. J. Antosiewicz et al. Optical constants of several multilayer transition metal dichalcogenides measured by spectroscopic ellipsometry in the 300–1700 nm range: high index, anisotropy, and hyperbolicity. ACS Photonics, 9, 2398(2022).

    [41] K. F. Mak, K. He, J. Shan et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 7, 494(2012).

    [42] S. Wu, J. S. Ross, G.-B. Liu et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys., 9, 149(2013).

    [43] H. Zeng, J. Dai, W. Yao et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 7, 490(2012).

    [44] Q. Zhao, W.-J. Zhou, Y.-H. Deng et al. Plexcitonic strong coupling: unique features, applications, and challenges. J. Phys. Appl. Phys., 55, 203002(2022).

    [45] X. Xiong, N. Kongsuwan, Y. Lai et al. Room-temperature plexcitonic strong coupling: ultrafast dynamics for quantum applications. Appl. Phys. Lett., 118, 130501(2021).

    [46] Y. Huang, F. Wu, L. Yu. Rabi oscillation study of strong coupling in a plasmonic nanocavity. New J. Phys., 22, 063053(2020).

    [47] Y. Huang, Y. Wang, K. Liang et al. Quantum theory of nonradiative decay dependent on the coupling strength in a plexcitonic system. Opt. Express, 29, 43292(2021).

    [48] W. Zhang, J.-B. You, J. Liu et al. Steering room-temperature plexcitonic strong coupling: a diexcitonic perspective. Nano Lett., 21, 8979(2021).

    [49] A. Wallraff, D. I. Schuster, A. Blais et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431, 162(2004).

    [50] B. Kolaric, B. Maes, K. Clays et al. Strong light–matter coupling as a new tool for molecular and material engineering: quantum approach. Adv. Quantum Technol., 1, 1800001(2018).

    [51] T. M. Karg, B. Gouraud, C. T. Ngai et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science, 369, 174(2020).

    [52] G. Khitrova, H. M. Gibbs, M. Kira et al. Vacuum Rabi splitting in semiconductors. Nat. Phys., 2, 81(2006).

    [53] A. González-Tudela, A. Reiserer, J. J. García-Ripoll et al. Light–matter interactions in quantum nanophotonic devices. Nat. Rev. Phys., 6, 166(2024).

    [54] R. Liu, Z. Liao, Y.-C. Yu et al. Relativity and diversity of strong coupling in coupled plasmon-exciton systems. Phys. Rev. B, 103, 235430(2021).

    [55] I. A. M. Al-Ani, K. As’Ham, L. Huang et al. Strong coupling of exciton and high-Q mode in all-perovskite metasurfaces. Adv. Opt. Mater., 10, 2101120(2022).

    [56] P. Xie, Q. Ding, Z. Liang et al. Cavity-assisted boosting of self-hybridization between excitons and photonic bound states in the continuum in multilayers of transition metal dichalcogenides. Phys. Rev. B, 107, 075415(2023).

    [57] V. Ardizzone, F. Riminucci, S. Zanotti et al. Polariton Bose–Einstein condensate from a bound state in the continuum. Nature, 605, 447(2022).

    [58] Q. Han, J. Wang, S. Tian et al. Inorganic perovskite-based active multifunctional integrated photonic devices. Nat. Commun., 15, 1536(2024).

    [59] L. Kühner, F. J. Wendisch, A. A. Antonov et al. Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality. Light Sci. Appl., 12, 250(2023).

    [60] J. Tang, C. Dai, Y. Shi et al. Immersion-triggered switchable quasi-BIC with optical encryption from 1.5D metagratings. Adv. Funct. Mater., 33, 2304666(2023).

    [61] S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun., 9, 4797(2018).

    [62] Q. Cheng, J. Yang, L. Sun et al. Tuning the plexcitonic optical chirality using discrete structurally chiral plasmonic nanoparticles. Nano Lett., 23, 11376(2023).

    [63] F. Wu, J. Guo, Y. Huang et al. Plexcitonic optical chirality: strong exciton–plasmon coupling in chiral J-aggregate-metal nanoparticle complexes. ACS Nano, 15, 2292(2021).

    Zhonghong Shi, Houjiao Zhang, Zhang-Kai Zhou, "Strong light–matter coupling between excitons and chiral quasi-bound states in the continuum in van der Waals metasurfaces," Chin. Opt. Lett. 22, 103602 (2024)
    Download Citation