• Advanced Photonics
  • Vol. 7, Issue 2, 026001 (2025)
Oumeng Zhang1,†,*, Haowen Zhou1, Brandon Y. Feng2..., Elin M. Larsson3, Reinaldo E. Alcalde3, Siyuan Yin4, Catherine Deng1 and Changhuei Yang1,4|Show fewer author(s)
Author Affiliations
  • 1California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
  • 2Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, United States
  • 3California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California, United States
  • 4California Institute of Technology, Department of Medical Engineering, Pasadena, California, United States
  • show less
    DOI: 10.1117/1.AP.7.2.026001 Cite this Article Set citation alerts
    Oumeng Zhang, Haowen Zhou, Brandon Y. Feng, Elin M. Larsson, Reinaldo E. Alcalde, Siyuan Yin, Catherine Deng, Changhuei Yang, "Single-shot volumetric fluorescence imaging with neural fields," Adv. Photon. 7, 026001 (2025) Copy Citation Text show less
    References

    [1] P. Prashar, N. Kapoor, S. Sachdeva. Rhizosphere: its structure, bacterial diversity and significance. Rev. Environ. Sci. Bio/Technol., 13, 63-77(2014).

    [2] M. Levoy et al. Light field microscopy. ACM Trans. Graph., 25, 924-934(2006).

    [3] M. Broxton et al. Wave optics theory and 3D deconvolution for the light field microscope. Opt. Express, 21, 25418(2013).

    [4] O. Skocek et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods, 15, 429-432(2018).

    [5] Y. Xue et al. Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope. Sci. Adv., 6, eabb7508(2020).

    [6] V. Boominathan et al. Recent advances in lensless imaging. Optica, 9, 1-16(2022).

    [7] J. K. Adams et al. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope. Sci. Adv., 3, e1701548(2017).

    [8] N. Antipa et al. DiffuserCam: lensless single-exposure 3D imaging. Optica, 5, 1-9(2018).

    [9] G. Kuo et al. On-chip fluorescence microscopy with a random microlens diffuser. Opt. Express, 28, 8384-8399(2020).

    [10] F. Tian, J. Hu, W. Yang. GEOMScope: large field-of-view 3D lensless microscopy with low computational complexity. Laser Photon. Rev., 15, 2100072(2021).

    [11] C. Guo et al. Fourier light-field microscopy. Opt. Express, 27, 25573-25594(2019).

    [12] K. Han et al. 3D super-resolution live-cell imaging with radial symmetry and Fourier light-field microscopy. Biomed. Opt. Express, 13, 5574-5584(2022).

    [13] K. Yanny et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light Sci. Appl., 9, 171(2020).

    [14] F. L. Liu et al. Fourier DiffuserScope: single-shot 3D Fourier light field microscopy with a diffuser. Opt. Express, 28, 28969-28986(2020).

    [15] L. Von Diezmann, Y. Shechtmanm, W. E. Moerner. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev., 117, 7244-7275(2017).

    [16] E. Nehme et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods, 17, 734-740(2020).

    [17] B. Huang et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).

    [18] M. D. Lew et al. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Opt. Lett., 36, 202-204(2011).

    [19] S. R. P. Pavani et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. U. S. A., 106, 2995-2999(2009).

    [20] Y. Shechtman et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett., 15, 4194-4199(2015).

    [21] T. Wu, J. Lu, M. D. Lew. Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules. Optica, 9, 505-511(2022).

    [22] A. S. Backer et al. A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy. Appl. Phys. Lett., 104, 193701(2014).

    [23] A. S. Backer et al. Single-molecule orientation measurements with a quadrated pupil. Opt. Lett., 38, 1521-1523(2013).

    [24] O. Zhang et al. Imaging the three-dimensional orientation and rotational mobility of fluorescent emitters using the Tri-spot point spread function. Appl. Phys. Lett., 113, 031103(2018).

    [25] S. T. Hess, T. P. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [26] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [27] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [28] M. Lelek et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers, 1, 39(2021).

    [29] B. Ghanekar et al. Polarized spiral point spread function for single-shot 3D sensing. IEEE Trans. Pattern Anal. Mach. Intell., 99, 1-12(2024).

    [30] O. Zhang et al. Investigating 3D microbial community dynamics of the rhizosphere using quantitative phase and fluorescence microscopy. Proc. Natl. Acad. Sci. U. S. A., 121, e2403122121(2024).

    [31] A. C. Kak, M. Slaney. Principles of Computerized Tomographic Imaging(2001).

    [32] F. Dell’Acqua et al. A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging. IEEE Trans. Biomed. Eng., 54, 462-472(2007).

    [33] J. J. Park et al. DeepSDF: learning continuous signed distance functions for shape representation, 165-174(2019).

    [34] B. Mildenhall et al. NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM, 65, 99-106(2022).

    [35] R. Liu et al. Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields. Nat. Mach. Intell., 4, 781-791(2022).

    [36] S. Xie et al. Diner: disorder-invariant implicit neural representation, 6143-6152(2023).

    [37] H. Zhu et al. DNF: diffractive neural field for lensless microscopic imaging. Opt. Express, 30, 18168-18178(2022).

    [38] B. Y. Feng et al. NeuWS: neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media. Sci. Adv., 9, eadg4671(2023).

    [39] I. Kang et al. Coordinate-based neural representations for computational adaptive optics in widefield microscopy. Nat. Mach. Intell., 6, 714-725(2024).

    [40] R. Cao et al. Neural space–time model for dynamic multi-shot imaging. Nat. Methods, 21, 2336-2341(2024).

    [41] H. Zhou et al. Fourier ptychographic microscopy image stack reconstruction using implicit neural representations. Optica, 10, 1679-1687(2023).

    [42] M. Hui et al. Microdiffusion: implicit representation-guided diffusion for 3D reconstruction from limited 2D microscopy projections, 11460-11469(2024).

    [43] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [44] E. Bruggeman et al. POLCAM: instant molecular orientation microscopy for the life sciences. Nat. Methods, 21, 1873-1883(2024).

    [45] O. Zhang et al. Six-dimensional single-molecule imaging with isotropic resolution using a multi-view reflector microscope. Nat. Photonics, 17, 179-186(2023).

    [46] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [47] A. S. Backer, W. E. Moerner. Extending single-molecule microscopy using optical Fourier processing. J. Phys. Chem. B, 118, 8313-8329(2014).

    [48] B. Ferdman et al. VIPR: vectorial implementation of phase retrieval for fast and accurate microscopic pixel-wise pupil estimation. Opt. Express, 28, 10179-10198(2020).

    [49] I. Loshchilov, F. Hutter. Decoupled weight decay regularization(2017).

    [50] C.-Y. Fu, M. Shvets, A. C. Berg. Retinamask: Learning to predict masks improves state-of-the-art single-shot detection for free(2019).

    [51] M. Tancik et al. Fourier features let networks learn high frequency functions in low dimensional domains, 7537-7547(2020).

    [52] N. A. Fujishige, N. N. Kapadia, A. M. Hirsch. A feeling for the micro-organism: structure on a small scale. Biofilms on plant roots. Bot. J. Linn. Soc., 150, 79-88(2006).

    [53] A. V. Vollsnes, C. M. Futsaether, A. G. Bengough. Quantifying rhizosphere particle movement around mutant maize roots using time-lapse imaging and particle image velocimetry. Eur. J. Soil Sci., 61, 926-939(2010).

    [54] D. Probandt et al. Microbial life on a sand grain: from bulk sediment to single grains. ISME J., 12, 623-633(2018).

    [55] F. Anselmucci et al. Imaging local soil kinematics during the first days of maize root growth in sand. Sci. Rep., 11, 22262(2021).

    [56] J. Chalfoun et al. MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci. Rep., 7, 4988(2017).

    [57] Z. Bian et al. Autofocusing technologies for whole slide imaging and automated microscopy. J. Biophotonics, 13, e202000227(2020).

    [58] M. Liang et al. All-in-focus fine needle aspiration biopsy imaging based on Fourier ptychographic microscopy. J. Pathol. Inform., 13, 100119(2022).

    [59] Z. Shen et al. Monocular metasurface camera for passive single-shot 4D imaging. Nat. Commun., 14, 1035(2023).

    [60] V. A. Ushenko et al. 3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues. Sci. Rep., 11, 5162(2021).

    [61] O. Sieryi et al. Optical anisotropy composition of benign and malignant prostate tissues revealed by Mueller-matrix imaging. Biomed. Opt. Express, 13, 6019-6034(2022).

    [62] A. G. Ushenko et al. Insights into polycrystalline microstructure of blood films with 3D Mueller matrix imaging approach. Sci. Rep., 14, 13679(2024).

    [63] A. Ushenko et al. Stokes-correlometry analysis of biological tissues with polycrystalline structure. IEEE J. Sel. Top. Quantum Electron., 25, 7101612(2019).

    [64] K. Verbelen, S. Kerstens. Polarization confocal microscopy and Congo Red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. J. Microsc., 198, 101-107(2000).

    [65] T. I. Baskin et al. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiol., 135, 2279-2290(2004).

    [66] S. Brasselet, M. A. Alonso. Polarization microscopy: from ensemble structural imaging to single-molecule 3D orientation and localization microscopy. Optica, 10, 1486-1510(2023).

    [67] M. Jafarnejad et al. Quantification of the whole lymph node vasculature based on tomography of the vessel corrosion casts. Sci. Rep., 9, 13380(2019).

    Oumeng Zhang, Haowen Zhou, Brandon Y. Feng, Elin M. Larsson, Reinaldo E. Alcalde, Siyuan Yin, Catherine Deng, Changhuei Yang, "Single-shot volumetric fluorescence imaging with neural fields," Adv. Photon. 7, 026001 (2025)
    Download Citation