[1] P. Prashar, N. Kapoor, S. Sachdeva. Rhizosphere: its structure, bacterial diversity and significance. Rev. Environ. Sci. Bio/Technol., 13, 63-77(2014).
[2] M. Levoy et al. Light field microscopy. ACM Trans. Graph., 25, 924-934(2006).
[3] M. Broxton et al. Wave optics theory and 3D deconvolution for the light field microscope. Opt. Express, 21, 25418(2013).
[4] O. Skocek et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods, 15, 429-432(2018).
[5] Y. Xue et al. Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope. Sci. Adv., 6, eabb7508(2020).
[6] V. Boominathan et al. Recent advances in lensless imaging. Optica, 9, 1-16(2022).
[7] J. K. Adams et al. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope. Sci. Adv., 3, e1701548(2017).
[8] N. Antipa et al. DiffuserCam: lensless single-exposure 3D imaging. Optica, 5, 1-9(2018).
[9] G. Kuo et al. On-chip fluorescence microscopy with a random microlens diffuser. Opt. Express, 28, 8384-8399(2020).
[10] F. Tian, J. Hu, W. Yang. GEOMScope: large field-of-view 3D lensless microscopy with low computational complexity. Laser Photon. Rev., 15, 2100072(2021).
[11] C. Guo et al. Fourier light-field microscopy. Opt. Express, 27, 25573-25594(2019).
[12] K. Han et al. 3D super-resolution live-cell imaging with radial symmetry and Fourier light-field microscopy. Biomed. Opt. Express, 13, 5574-5584(2022).
[13] K. Yanny et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light Sci. Appl., 9, 171(2020).
[14] F. L. Liu et al. Fourier DiffuserScope: single-shot 3D Fourier light field microscopy with a diffuser. Opt. Express, 28, 28969-28986(2020).
[15] L. Von Diezmann, Y. Shechtmanm, W. E. Moerner. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev., 117, 7244-7275(2017).
[16] E. Nehme et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods, 17, 734-740(2020).
[17] B. Huang et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).
[18] M. D. Lew et al. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Opt. Lett., 36, 202-204(2011).
[19] S. R. P. Pavani et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. U. S. A., 106, 2995-2999(2009).
[20] Y. Shechtman et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett., 15, 4194-4199(2015).
[21] T. Wu, J. Lu, M. D. Lew. Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules. Optica, 9, 505-511(2022).
[22] A. S. Backer et al. A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy. Appl. Phys. Lett., 104, 193701(2014).
[23] A. S. Backer et al. Single-molecule orientation measurements with a quadrated pupil. Opt. Lett., 38, 1521-1523(2013).
[24] O. Zhang et al. Imaging the three-dimensional orientation and rotational mobility of fluorescent emitters using the Tri-spot point spread function. Appl. Phys. Lett., 113, 031103(2018).
[25] S. T. Hess, T. P. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).
[26] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).
[27] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).
[28] M. Lelek et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers, 1, 39(2021).
[29] B. Ghanekar et al. Polarized spiral point spread function for single-shot 3D sensing. IEEE Trans. Pattern Anal. Mach. Intell., 99, 1-12(2024).
[30] O. Zhang et al. Investigating 3D microbial community dynamics of the rhizosphere using quantitative phase and fluorescence microscopy. Proc. Natl. Acad. Sci. U. S. A., 121, e2403122121(2024).
[31] A. C. Kak, M. Slaney. Principles of Computerized Tomographic Imaging(2001).
[32] F. Dell’Acqua et al. A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging. IEEE Trans. Biomed. Eng., 54, 462-472(2007).
[33] J. J. Park et al. DeepSDF: learning continuous signed distance functions for shape representation, 165-174(2019).
[34] B. Mildenhall et al. NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM, 65, 99-106(2022).
[35] R. Liu et al. Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields. Nat. Mach. Intell., 4, 781-791(2022).
[36] S. Xie et al. Diner: disorder-invariant implicit neural representation, 6143-6152(2023).
[37] H. Zhu et al. DNF: diffractive neural field for lensless microscopic imaging. Opt. Express, 30, 18168-18178(2022).
[38] B. Y. Feng et al. NeuWS: neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media. Sci. Adv., 9, eadg4671(2023).
[39] I. Kang et al. Coordinate-based neural representations for computational adaptive optics in widefield microscopy. Nat. Mach. Intell., 6, 714-725(2024).
[40] R. Cao et al. Neural space–time model for dynamic multi-shot imaging. Nat. Methods, 21, 2336-2341(2024).
[41] H. Zhou et al. Fourier ptychographic microscopy image stack reconstruction using implicit neural representations. Optica, 10, 1679-1687(2023).
[42] M. Hui et al. Microdiffusion: implicit representation-guided diffusion for 3D reconstruction from limited 2D microscopy projections, 11460-11469(2024).
[43] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).
[44] E. Bruggeman et al. POLCAM: instant molecular orientation microscopy for the life sciences. Nat. Methods, 21, 1873-1883(2024).
[45] O. Zhang et al. Six-dimensional single-molecule imaging with isotropic resolution using a multi-view reflector microscope. Nat. Photonics, 17, 179-186(2023).
[46] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).
[47] A. S. Backer, W. E. Moerner. Extending single-molecule microscopy using optical Fourier processing. J. Phys. Chem. B, 118, 8313-8329(2014).
[48] B. Ferdman et al. VIPR: vectorial implementation of phase retrieval for fast and accurate microscopic pixel-wise pupil estimation. Opt. Express, 28, 10179-10198(2020).
[49] I. Loshchilov, F. Hutter. Decoupled weight decay regularization(2017).
[50] C.-Y. Fu, M. Shvets, A. C. Berg. Retinamask: Learning to predict masks improves state-of-the-art single-shot detection for free(2019).
[51] M. Tancik et al. Fourier features let networks learn high frequency functions in low dimensional domains, 7537-7547(2020).
[52] N. A. Fujishige, N. N. Kapadia, A. M. Hirsch. A feeling for the micro-organism: structure on a small scale. Biofilms on plant roots. Bot. J. Linn. Soc., 150, 79-88(2006).
[53] A. V. Vollsnes, C. M. Futsaether, A. G. Bengough. Quantifying rhizosphere particle movement around mutant maize roots using time-lapse imaging and particle image velocimetry. Eur. J. Soil Sci., 61, 926-939(2010).
[54] D. Probandt et al. Microbial life on a sand grain: from bulk sediment to single grains. ISME J., 12, 623-633(2018).
[55] F. Anselmucci et al. Imaging local soil kinematics during the first days of maize root growth in sand. Sci. Rep., 11, 22262(2021).
[56] J. Chalfoun et al. MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci. Rep., 7, 4988(2017).
[57] Z. Bian et al. Autofocusing technologies for whole slide imaging and automated microscopy. J. Biophotonics, 13, e202000227(2020).
[58] M. Liang et al. All-in-focus fine needle aspiration biopsy imaging based on Fourier ptychographic microscopy. J. Pathol. Inform., 13, 100119(2022).
[59] Z. Shen et al. Monocular metasurface camera for passive single-shot 4D imaging. Nat. Commun., 14, 1035(2023).
[60] V. A. Ushenko et al. 3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues. Sci. Rep., 11, 5162(2021).
[61] O. Sieryi et al. Optical anisotropy composition of benign and malignant prostate tissues revealed by Mueller-matrix imaging. Biomed. Opt. Express, 13, 6019-6034(2022).
[62] A. G. Ushenko et al. Insights into polycrystalline microstructure of blood films with 3D Mueller matrix imaging approach. Sci. Rep., 14, 13679(2024).
[63] A. Ushenko et al. Stokes-correlometry analysis of biological tissues with polycrystalline structure. IEEE J. Sel. Top. Quantum Electron., 25, 7101612(2019).
[64] K. Verbelen, S. Kerstens. Polarization confocal microscopy and Congo Red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. J. Microsc., 198, 101-107(2000).
[65] T. I. Baskin et al. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiol., 135, 2279-2290(2004).
[66] S. Brasselet, M. A. Alonso. Polarization microscopy: from ensemble structural imaging to single-molecule 3D orientation and localization microscopy. Optica, 10, 1486-1510(2023).
[67] M. Jafarnejad et al. Quantification of the whole lymph node vasculature based on tomography of the vessel corrosion casts. Sci. Rep., 9, 13380(2019).