• Optics and Precision Engineering
  • Vol. 31, Issue 18, 2723 (2023)
Yunzuo ZHANG1,2,*, Cunyu WU1, Yameng LIU1, Tian ZHANG1, and Yuxin ZHENG1
Author Affiliations
  • 1School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang050043, China
  • 2Hebei Key Laboratory of Electromagnetic Environmental Effects and Information Processing, Shijiazhuang Tiedao University, Shijiazhuang050043, China
  • show less
    DOI: 10.37188/OPE.20233118.2723 Cite this Article
    Yunzuo ZHANG, Cunyu WU, Yameng LIU, Tian ZHANG, Yuxin ZHENG. Joint self-attention and branch sampling for object detection on drone imagery[J]. Optics and Precision Engineering, 2023, 31(18): 2723 Copy Citation Text show less
    References

    [1] 曲优,李文辉.基于锚框变换的单阶段旋转目标检测方法[J].吉林大学学报(工学版),2022,52(01):162-173.QUY, LIW H. Single-stage rotated object detection network based on anchor transformation[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 162-173.(in Chinese)

    [2] 李超, 黄新宇, 王凯. 基于特征融合和自学习锚框的高分辨率图像小目标检测算法[J]. 电子学报, 2022, 50(7):1684-1695. doi: 10.12263/DZXB.20200917LIC, HUANGX Y, WANGK. Small object detection of high-resolution images based on feature fusion and learnable anchor[J]. Acta Electronica Sinica, 2022, 50(7): 1684-1695.(in Chinese). doi: 10.12263/DZXB.20200917

    [3] 刘芳, 韩笑. 基于多尺度深度学习的自适应航拍目标检测[J]. 航空学报, 2022, 43(5):463-474. doi: 10.7527/S1000-6893.2021.25270LIUF, HANX. Adaptive aerial object detection based on multi-scale deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5):463-474.(in Chinese). doi: 10.7527/S1000-6893.2021.25270

    [4] N DALAL, B TRIGGS. Histograms of Oriented Gradients for Human Detection, 886-893(2005).

    [5] R LIENHART, J MAYDT. An Extended Set of Haar-Like Features for Rapid Object Detection, I(2002).

    [6] P VIOLA, M JONES. Rapid object detection using a boosted cascade of simple features, I(2003).

    [7] 林浩, 李雷孝, 王慧. 支持向量机在智能交通系统中的研究应用综述[J]. 计算机科学与探索, 2020, 14(6)901-917.XUD G, WANGL, LIF. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.(in Chinese)

    [9] 张财广, 熊博莅, 匡纲要. 光学卫星遥感图像舰船目标检测综述[J]. 电波科学学报, 2020, 35(5):637-647. doi: 10.13443/j.cjors.2020040603ZHANGC G, XIONGB L, KUANGG Y. A survey of ship detection in optical satellite remote sensing images[J]. Chinese Journal of Radio Science, 2020, 35(5):637-647.(in Chinese). doi: 10.13443/j.cjors.2020040603

    [10] F YANG, H FAN, P CHU et al. Clustered object detection in aerial images, 8310-8319(2020).

    [11] W P YU, T YANG, C CHEN. Towards resolving the challenge of long-tail distribution in uav images for object detection, 3257-3266(2021).

    [12] Z M LIU, G Y GAO, L SUN et al. HRDNet: high-resolution detection network for small objects, 1-6(2021).

    [13] Z Y WU, K SURESH, P NARAYANAN et al. Delving into robust object detection from unmanned aerial vehicles: a deep nuisance disentanglement approach, 1201-1210(2020).

    [14] Y YOUSSEF, M ELSHENAWY. Automatic vehicle counting and tracking in aerial video feeds using cascade region-based convolutional neural networks and feature pyramid networks. Transportation Research Record: Journal of the Transportation Research Board, 2675, 304-317(2021).

    [15] J N LI, X D LIANG, Y C WEI et al. Perceptual Generative Adversarial Networks for Small Object Detection, 1951-1959(2017).

    [16] Z Y TANG, X LIU, B J YANG. PENet: object detection using points estimation in high definition aerial images, 392-398(2021).

    [17] M LAMINE MEKHALFI, M B BEJIGA, D SORESINA et al. Capsule networks for object detection in UAV imagery. Remote Sensing, 11, 1694(2019).

    [18] C Y CHEN, W G GONG, Y L CHEN et al. Object detection in remote sensing images based on a scene-contextual feature pyramid network. Remote Sensing, 11, 339(2019).

    [19] R GIRSHICK. Fast R-CNN, 1440-1448(2016).

    [20] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [21] A BOCHKOVSKIY, C Y WANG, H Y M LIAO. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv, 2004-10934(2020). https://arxiv.org/abs/2004.10934

    [22] C Y WANG, A BOCHKOVSKIY, H Y M LIAO. YOLOv7: Trainable Bag-of-Freebies Sets New State-Of-The-Art for Real-Time Object Detectors. arXiv, 2207-02696(2022). https://arxiv.org/abs/2207.02696

    [23] A DOSOVITSKIY, L BEYER, A KOLESNIKOV et al. An Image is Worth. arXiv, 2010-11929(2020). https://arxiv.org/abs/2010.11929

    [24] Z Q SUN, S C CAO, Y M YANG et al. Rethinking transformer-based set prediction for object detection, 3591-3600(2022).

    [25] D W DU, P F ZHU, L Y WEN et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results, 213-226(2020).

    [26] D W DU, Y K QI, H Y YU et al. The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking. Computer Vision - ECCV 2018, 375-391(2018).

    [27] V CHALAVADI, P JERIPOTHULA, R DATLA et al. mSODANet: a network for multi-scale object detection in aerial images using hierarchical dilated convolutions. Pattern Recognition, 126, 108548(2022).

    [28] C L LI, T YANG, S J ZHU et al. Density Map Guided Object Detection in Aerial Images. WA, 737-746(2020).

    [29] S T DENG, S LI, K XIE et al. A global-local self-adaptive network for drone-view object detection. IEEE Transactions on Image Processing, 30, 1556-1569(2021).

    [30] C Z DUAN, Z W WEI, C ZHANG et al. Coarse-grained density map guided object detection in aerial images, 2789-2798(2021).

    [31] J X LENG, M MO, Y H ZHOU et al. Pareto refocusing for drone-view object detection, 1320-1334(2022).

    Yunzuo ZHANG, Cunyu WU, Yameng LIU, Tian ZHANG, Yuxin ZHENG. Joint self-attention and branch sampling for object detection on drone imagery[J]. Optics and Precision Engineering, 2023, 31(18): 2723
    Download Citation