• Matter and Radiation at Extremes
  • Vol. 4, Issue 6, 064403 (2019)
Yan-Jun Gu1、2、a), Martin Jirka1、3, Ondrej Klimo1、3, and Stefan Weber1、4
Author Affiliations
  • 1Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
  • 2Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 18200 Prague, Czech Republic
  • 3FNSPE, Czech Technical University in Prague, 11519 Prague, Czech Republic
  • 4School of Science, Xi’an Jiaotong University, Xi’an 710049 China
  • show less
    DOI: 10.1063/1.5098978 Cite this Article
    Yan-Jun Gu, Martin Jirka, Ondrej Klimo, Stefan Weber. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4(6): 064403 Copy Citation Text show less
    References

    [1] G. Mourou, A. D. Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219(1985).

    [2] V. Yanovsky et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express, 16, 2109(2008).

    [3] A. S. Pirozhkov et al. Approaching the diffraction-limited, bandwidth-limited petawatt. Opt. Express, 25, 20486(2017).

    [4] J. Collier, W. Sandner, G. Korn, G. Mourou. ELI Extreme Light Infrastructure (Whitebook)(2011).

    [5] G. Chériaux et al. Apollon-10p: Status and implementation. AIP Conf. Proc., 1462, 78(2012).

    [6] C. Bamber et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D, 60, 092004(1999).

    [7] A. R. Bell, J. G. Kirk. Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett., 101, 200403(2008).

    [8] N. M. Naumova, I. V. Sokolov, J. A. Nees, G. A. Mourou. Pair creation in QED-strong pulsed laser fields interacting with electron beams. Phys. Rev. Lett., 105, 195005(2010).

    [9] S. S. Bulanov, V. S. Popov, J. Nees, V. D. Mur, N. B. Narozhny. Multiple colliding electromagnetic pulses: A way to lower the threshold of e+e pair production from vacuum. Phys. Rev. Lett., 104, 220404(2010).

    [10] A. V. Kim, M. Marklund, A. M. Sergeev, A. A. Gonoskov, A. V. Korzhimanov. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses. Phys. Rev. E, 84, 046403(2011).

    [11] K. T. Phuoc et al. All-optical Compton gamma-ray source. Nat. Photonics, 6, 308(2012).

    [12] T. Nakamura et al. High-power γ-ray flash generation in ultraintense laser-plasma interactions. Phys. Rev. Lett., 108, 195001(2012).

    [13] C. P. Ridgers et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett., 108, 165006(2012).

    [14] L. L. Ji, B. F. Shen, A. Pukhov, K. Akli, I. Y. Kostyukov. Radiation-reaction trapping of electrons in extreme laser fields. Phys. Rev. Lett., 112, 145003(2014).

    [15] A. R. Bell, T. G. Blackburn, J. G. Kirk, C. P. Ridgers. Quantum radiation reaction in laser–electron-beam collisions. Phys. Rev. Lett., 112, 015001(2014).

    [16] X.-L. Zhu et al. Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone. New J. Phys., 17, 053039(2015).

    [17] X. Ribeyre et al. Pair creation in collision of γ-ray beams produced with high-intensity lasers. Phys. Rev. E, 93, 013201(2016).

    [18] G. Korn, Y. J. Gu, S. Weber, O. Klimo. High density ultrashort relativistic positron beam generation by laser-plasma interaction. New J. Phys., 18, 113023(2016).

    [19] H.-Z. Li et al. Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils. Sci. Rep., 7, 17312(2017).

    [20] H. X. Chang et al. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction. Sci. Rep., 7, 45031(2017).

    [21] X.-L. Zhu et al. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas. Nat. Commun., 7, 13686(2016).

    [22] Z. Gong et al. Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime. Plasma Phys. Controlled Fusion, 60, 044004(2018).

    [23] O. Klimo, S. Weber, M. Jirka, G. Korn, M. Vranic. QED cascade with 10 PW-class lasers. Sci. Rep., 7, 15302(2017).

    [24] T. G. Blackburn, M. Marklund. Nonlinear Breit-Wheeler pair creation with bremsstrahlung γ rays. Plasma Phys. Controlled Fusion, 60, 054009(2018).

    [25] G. A. Mourou, T. Tajima, S. V. Bulanov. Optics in the relativistic regime. Rev. Mod. Phys., 78, 309(2006).

    [26] C. H. Keitel, A. Di Piazza, K. Z. Hatsagortsyan. Strong signatures of radiation reaction below the radiation-dominated regime. Phys. Rev. Lett., 102, 254802(2009).

    [27] C. H. Keitel, C. Müller, K. Z. Hatsagortsyan, A. Di Piazza. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177(2012).

    [28] S. V. Bulanov. Magnetic reconnection: From MHD to QED. Plasma Phys. Controlled Fusion, 59, 014029(2017).

    [29] J. M. Cole et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X, 8, 011020(2018).

    [30] K. Poder et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X, 8, 031004(2018).

    [31] R. Edwards, M. Maucec, D. J. Hamilton, J. Galy, J. Magill. Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys., 9, 23(2007).

    [32] W. Galster, K. W. D. Ledingham. Laser-driven particle and photon beams and some applications. New J. Phys., 12, 045005(2010).

    [33] Y. Glinec et al. High-resolution γ-ray radiography produced by a laser-plasma driven electron source. Phys. Rev. Lett., 94, 025003(2005).

    [34] A. Giulietti et al. Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. Phys. Rev. Lett., 101, 105002(2008).

    [35] J. Vyskočil, O. Klimo, S. Weber. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets. Plasma Phys. Controlled Fusion, 60, 054013(2018).

    [36] G. Sarri et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett., 113, 224801(2014).

    [37] D. J. Stark, A. V. Arefiev, T. Toncian. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Phys. Rev. Lett., 116, 185003(2016).

    [38] W. Yan et al. High-order multiphoton Thomson scattering. Nat. Photonics, 11, 514(2017).

    [39] L. Gremillet, E. d’Humières, B. Martinez. Synchrotron emission from nanowire array targets irradiated by ultraintense laser pulses. Plasma Phys. Controlled Fusion, 60, 074009(2018).

    [40] P. Gibbon, W. M. Wang, L. M. Chen, J. Zhang, Y. T. Li, Zh. M. Sheng. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime. Proc. Natl. Acad. Sci. U. S. A., 115, 9911(2018).

    [41] C. Bula et al. Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett., 76, 3116(1996).

    [42] A. Di Piazza, K. Z. Hatsagortsyan, C. H. Keitel. Quantum radiation reaction effects in multiphoton Compton scattering. Phys. Rev. Lett., 105, 220403(2010).

    [43] A. Benedetti, C. H. Keitel, M. Tamburini. Giant collimated gamma-ray flashes. Nat. Photonics, 12, 319(2018).

    [44] X. L. Zhu et al. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets. Appl. Phys. Lett., 112, 174102(2018).

    [45] Y. J. Gu, S. Weber. Intense, directional and tunable γ-ray emission via relativistic oscillaitng plasma mirror. Opt. Express, 26, 19932(2018).

    [46] G. Breit, J. A. Wheeler. Collision of two light quanta. Phys. Rev., 46, 1087(1934).

    [47] V. I. Ritus, A. I. Nikishov. Interaction of electrons and photons with a very strong electromagnetic field. Sov. Phys. - Usp., 13, 303(1970).

    [48] M. Jirka et al. Electron dynamics and γ and ee+ production by colliding laser pulses. Phys. Rev. E, 93, 023207(2016).

    [49] A. D. Piazza, M. Tamburini, C. H. Keitel. Laser-pulse-shape control of seeded QED cascades. Sci. Rep., 7, 5694(2017).

    [50] O. Jansen et al. Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production. Plasma Phys. Controlled Fusion, 60, 054006(2018).

    [51] O. Klimo, S. Weber, G. Korn, M. Vranic. Multi-GeV electron-positron beam generation from laser-electron scattering. Sci. Rep., 8, 4702(2018).

    [52] S. V. Bulanov, Y.-J. Gu, O. Klimo, S. Weber. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses. Commun. Phys., 1, 93(2018).

    [53] S. V. Bulanov et al. On some theoretical probels of laser wake-field accelerators. J. Plasma Phys., 82, 905820308(2016).

    [54] C. Gahn et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett., 83, 4772(1999).

    [55] S. V. Bulanov et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers. Plasma Phys. Rep., 41, 1(2015).

    [56] E. Lifshitz, L. Landau. The Classical Theory of Fields(1975).

    [57] C. Ridgers et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions. J. Comput. Phys., 260, 273(2014).

    [58] T. D. Arber et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).

    [59] W. Luo et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets. Phys. Plasmas, 22, 063112(2015).

    Yan-Jun Gu, Martin Jirka, Ondrej Klimo, Stefan Weber. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4(6): 064403
    Download Citation