• Optical Instruments
  • Vol. 42, Issue 5, 63 (2020)
Zhen LI1,2
Author Affiliations
  • 1Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2020.05.010 Cite this Article
    Zhen LI. Design of near-field plasmonic vortex with shifting based on metasurface in terahertz region[J]. Optical Instruments, 2020, 42(5): 63 Copy Citation Text show less
    References

    [1] DEVLIN R C, AMBROSIO A, RUBIN N A. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [2] BOUCHARD F, DE LEON I, SCHULZ S A. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges[J]. Applied Physics Letters, 105, 101905(2014).

    [3] JESACHER A, SCHWAIGHOFER A, FÜRHAPTER S. Wavefront correction of spatial light modulators using an optical vortex image[J]. Optics Express, 15, 5801-5808(2007).

    [4] YU N F, GENEVET P, KATS M A. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [5] HUANG L L, CHEN X Z, MÜHLENBERND H. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [6] YUE F Y, WEN D D, ZHANG C M. Multichannel polarization‐controllable superpositions of orbital angular momentum states[J]. Advanced Materials, 29, 1603838(2017).

    [7] GUO Y H, PU M B, ZHAO Z Y. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 3, 2022-2029(2016).

    [8] ZHANG R R, ZHANG Y Q, MA L. Nanoscale optical lattices of arbitrary orders manipulated by plasmonic metasurfaces combining geometrical and dynamic phases[J]. Nanoscale, 11, 14024-14031(2019).

    [9] DU L P, XIE Z W, SI G Y. On-chip photonic spin hall lens[J]. ACS Photonics, 6, 1840-1847(2019).

    [10] LIN J, MUELLER J P B, WANG Q. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 340, 331-334(2013).

    [11] LEE S Y, KIM S J, KWON H. Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits[J]. IEEE Photonics Technology Letters, 27, 705-708(2015).

    [12] YANG H, CHEN Z Q, LIU Q. Near‐field orbital angular momentum generation and detection based on spin‐orbit interaction in gold metasurfaces[J]. Advanced Theory and Simulations, 2, 1900133(2019).

    [13] KIM H, PARK J, CHO S W. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens[J]. Nano Letters, 10, 529-536(2010).

    [14] MEHMOOD M Q, MEI S T, HUSSAIN S. Visible‐frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 28, 2533-2539(2016).

    [15] JIANG Z H, KANG L, YUE T W. A single noninterleaved metasurface for high‐capacity and flexible mode multiplexing of higher‐order Poincaré sphere beams[J]. Advanced Materials, 32, 1903983(2020).

    [16] GAO H, LI Y, CHEN L W. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design[J]. Nanoscale, 10, 666-671(2018).