• Photonics Research
  • Vol. 2, Issue 5, 121 (2014)
Carlo Rizza1,2, Elia Palange3, and and Alessandro Ciattoni2,*
Author Affiliations
  • 1Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, via Valleggio 11, 22100 Como, Italy
  • 2Consiglio Nazionale delle Ricerche, CNR-SPIN, 67100 Coppito L’Aquila, Italy
  • 3Dipartimento di Scienze fisiche e chimiche, Università di L’Aquila, via Vetoio, 67100 Coppito L’Aquila, Italy
  • show less
    DOI: 10.1364/PRJ.2.000121 Cite this Article Set citation alerts
    Carlo Rizza, Elia Palange, and Alessandro Ciattoni, "Electromagnetic chirality induced by graphene inclusions in multilayered metamaterials," Photonics Res. 2, 121 (2014) Copy Citation Text show less
    References

    [1] Q. Bao, K. P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6, 3677-3694(2012).

    [2] S. A. Mikhailov, K. Ziegler. New electromagnetic mode in graphene. Phys. Rev. Lett., 99, 016803(2007).

    [3] M. Jablan, H. Buljan, M. Soljacic. Plasmonics in graphene at infrared frequencies. Phys. Rev. B, 80, 245435(2009).

    [4] F. H. L. Koppens, D. E. Chang, F. J. G. de Abajo. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett., 11, 3370-3377(2011).

    [5] S. A. Mikhailov, K. Ziegler. Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys. Condens. Matter, 20, 384204(2008).

    [6] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [7] M. Tamagnone, A. Fallahi, J. R. Mosig, J. Perruisseau-Carrier. Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices. Nat. Photonics, 8, 556-563(2014).

    [8] T. Mueller, F. N. Xia, P. Avouris. Graphene photodetectors for high-speed optical communications. Nat. Photonics, 4, 297-301(2010).

    [9] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh. Broadband graphene polarizer. Nat. Photonics, 5, 411-415(2011).

    [10] A. Vakil, N. Engheta. Transformation optics using graphene. Science, 332, 1291-1294(2011).

    [11] A. Andryieuski, A. V. Lavrinenko, D. N. Chigrin. Graphene hyperlens for terahertz radiation. Phys. Rev. B, 86, 121108(R)(2012).

    [12] I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar. Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B, 87, 075416(2013).

    [13] M. A. K. Othman, C. Guclu, F. Capolino. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express, 21, 7614-7632(2013).

    [14] M. A. K. Othman, C. Guclu, F. Capolino. Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophoton., 7, 073089(2013).

    [15] A. Madani, S. Zhong, H. Tajalli, S. R. Entezar, A. Namdar, Y. Ma. Tunable metamaterials made of graphene-liquid crystal multilayers. Prog. Electromagn. Res., 143, 545-558(2013).

    [16] L. D. Landau, E. M. Lifshitz. Electrodynamics of Continuous Media(1960).

    [17] S. Zouhdi, A. Sihvola, A. P. Vinogradov. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications(2008).

    [18] J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky. Nonlocal effects in effective-medium response of nanolayered metamaterials. Appl. Phys. Lett., 90, 191109(2007).

    [19] A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar. Engineered optical nonlocality in nanostructured metamaterials. Phys. Rev. B, 84, 045424(2011).

    [20] C. Rizza, A. Ciattoni. Effective medium theory for Kapitza stratified media: diffractionless propagation. Phys. Rev. Lett, 110, 143901(2013).

    [21] C. Rizza, A. Ciattoni. Kapitza homogenization of deep gratings for designing dielectric metamaterials. Opt. Lett., 38, 3658-3660(2013).

    [22] I. V. Semchenkoy, S. A. Khakhomovy, S. A. Tretyakovzx, A. H. Sihvola, E. A. Fedosenkoy. Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves. J. Phys. D, 31, 2458-2464(1998).

    [23] E. D. Palik. Handbook of Optical Constants of Solids(1985).

    [24] R. T. Graf, F. Eng, J. L. Koenig, H. Ishida. Polarization modulation Fourier transform infrared ellipsometry of thin polymer films. Appl. Spectrosc., 40, 498-503(1986).

    [25] G. W. Hanson. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys., 103, 064302(2008).

    [26] X. Li, S. He, Y. Jin. Subwavelength focusing with a multilayered Fabry–Perot structure at optical frequencies. Phys. Rev. B, 75, 045103(2007).

    CLP Journals

    [1] Tun Cao, Yang Li, Xinyu Zhang, Yang Zou, "Theoretical study of tunable chirality from graphene integrated achiral metasurfaces," Photonics Res. 5, 441 (2017)

    Carlo Rizza, Elia Palange, and Alessandro Ciattoni, "Electromagnetic chirality induced by graphene inclusions in multilayered metamaterials," Photonics Res. 2, 121 (2014)
    Download Citation