[1] 陈晓荣, 蔡萍, 施文康. 光学非接触三维形貌测量技术新进展. 光学 精密工程, 10, 528-532(2002).
X R CHEN, P CAI, W K SHI. The latest development of optical non-contact 3D profile measurement. Opt. Precision Eng., 10, 528-532(2002).
[2] J XU, S ZHANG. Status, challenges, and future perspectives of fringe projection profilometry. Optics and Lasers in Engineering, 135, 106193(2020).
[3] L Y HAN, X CHENG, Z W LI et al. A robot-driven 3D shape measurement system for automatic quality inspection of thermal objects on a forging production line. Sensors, 18, 4368(2018).
[4] S CHEN. Intraoral 3-D measurement by means of group coding combined with consistent enhancement for fringe projection pattern. IEEE Transactions on Instrumentation and Measurement, 71, 5018512(2022).
[5] G SANSONI, M TREBESCHI, F DOCCHIO. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors, 9, 568-601(2009).
[6] 陈新禹, 孙非, 傅莉. 相移光栅轮廓术的便携式三维测量系统. 光学 精密工程, 23, 105-111(2015).
X Y CHEN, F SUN, L Fu et al. Phase shifting fringe profilometry based portable 3D measurement system. Opt. Precision Eng., 23, 105-111(2015).
[7] Z H ZHANG, W LIU, G D LIU et al. Overview of the development and application of 3D vision measurement technology. Journal of Image and Graphics, 1483-1502(2021).
张宗华, 刘巍, 刘国栋. 三维视觉测量技术及应用进展. 中国图象图形学报, 1483-1502(2021).
[8] 苏显渝, 张启灿, 陈文静. 结构光三维成像技术. 中国激光, 41, 1-10(2014).
X Y SU, Q C ZHANG, W J CHEN. Three-dimensional imaging based on structured illumination. Chinese Journal of Lasers, 41, 1-10(2014).
[9] 杨鹏斌, 邓林嘉, 陈元. 基于结构光的高反物体三维形貌测量方法. 中国激光, 46(2019).
P B YANG, L J DENG, Y CHEN et al. Three-dimensional shape measurement of highly reflective objects based on structured light. Chinese Journal of Lasers, 46(2019).
[10] W FENG, S J TANG, X D ZHAO et al. Three-dimensional shape measurement method of high-reflective surfaces based on adaptive fringe-pattern. Acta Optica Sinica, 40(2020).
冯维, 汤少靖, 赵晓冬. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报, 40(2020).
[11] C WADDINGTON, J KOFMAN. Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting. Optics and Lasers in Engineering, 48, 251-256(2010).
[12] J LI, J T GUAN, X B CHEN et al. Adaptive optimal exposure selection based on time cost function for 3D reconstruction of high dynamic range surfaces. Measurement Science and Technology, 34, 125018(2023).
[13] S ZHANG, S T YAU. High dynamic range scanning technique. Optical Engineering, 48, .(2009).
[14] 雷经发, 陆宗胜, 李永玲. 基于投影栅相位法和多曝光图像融合技术的强反射表面轮廓检测. 光学 精密工程, 30, 2195-2204(2022).
J F LEI, Z S LU, Y L LI et al. High reflection surface topography measurement based on fringe projection phase method and multi-exposure image fusion technology. Opt. Precision Eng., 30, 2195-2204(2022).
[15] Y K YIN, Z W CAI, H JIANG et al. High dynamic range imaging for fringe projection profilometry with single-shot raw data of the color camera. Optics and Lasers in Engineering, 89, 138-144(2017).
[16] Y H WANG, Q ZHANG, Y HU et al. Rapid 3D measurement of high dynamic range surface based on multi-polarization fringe projection. Optical Engineering, 60(2021).
[17] G H LIU, X Y LIU, Q Y FENG. 3D shape measurement of objects with high dynamic range of surface reflectivity. Applied Optics, 50, 4557-4565(2011).
[18] S J FENG, Q CHEN, C ZUO et al. Fast three-dimensional measurements for dynamic scenes with shiny surfaces. Optics Communications, 382, 18-27(2017).
[19] B Z LI, Z J XU, F GAO et al. 3D reconstruction of high reflective welding surface based on binocular structured light stereo vision. Machines, 10, 159(2022).
[20] Z SONG, R CHUNG, X T ZHANG. An accurate and robust strip-edge-based structured light means for shiny surface micromeasurement in 3-D. IEEE Transactions on Industrial Electronics, 60, 1023-1032(2013).
[21] Z SONG, H L JIANG, H B LIN et al. A high dynamic range structured light means for the 3D measurement of specular surface. Optics and Lasers in Engineering, 95, 8-16(2017).
[22] H LIN, J GAO, Q MEI et al. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment. Optics and Lasers in Engineering, 91, 206-215(2017).
[23] J X LIANG, Y P YE, F F GU et al. A polarized structured light method for the 3D measurement of high-reflective surfaces. Photonics, 10, 695(2023).
[24] Y N ZHANG, D Y QIAO, C F XIA et al. A method for high dynamic range 3D color modeling of objects through a color camera. Machine Vision and Applications, 34, 6(2023).
[25] M TROBINA(1995).
[26] H B ZHU, X J ZHANG, J LI et al. Quantitative evaluation of Bayer chromatic imaging on the accuracy of photogrammetric measurements. Measurement, 145, 724-734(2019).
[27] X Z SUN, X Y SU, X P ZOU. Phase-unwrapping based on complementary structured light binary code. Acta Optica Sinica, 28, 1947-1951(2008).
孙学真, 苏显渝, 邹小平. 基于互补型光栅编码的相位展开. 光学学报, 28, 1947-1951(2008).
[28] C ZUO, T Y TAO, S J FENG et al. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10, 000 frames per second. Optics and Lasers in Engineering, 102, 70-91(2018).
[29] P S HUANG. Novel method for structured light system calibration. Optical Engineering, 45(2006).