• Frontiers of Optoelectronics
  • Vol. 1, Issue 1, 109 (2008)
Jianghong YAO1、2、3、*, Liangping XUE1、2、3, Boxia YAN1、2、3, Guozhi JIA1、2、3, Jingjun XU1、2、3, and Guangyin ZHANG1、2、3
Author Affiliations
  • 1The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education
  • 2Tianjin Key Laboratory of Photonics Materials and Technology for Information Science
  • 3TEDA Applied Physics School, Nankai University, Tianjin 300457, China
  • show less
    DOI: 10.1007/s12200-008-0026-0 Cite this Article
    Jianghong YAO, Liangping XUE, Boxia YAN, Guozhi JIA, Jingjun XU, Guangyin ZHANG. Temperature tunable infrared optical parametric generation based on periodically poled MgO:LiNbO3 crystals[J]. Frontiers of Optoelectronics, 2008, 1(1): 109 Copy Citation Text show less
    References

    [1] Myers L E, Eckardt R C, Fejer M M, et al. Quasi-phasematched optical parametric oscillators in bulk periodically poled LiNbO3. Journal of the Optical Society of America B, 1995, 12(11) : 2102-2116

    [2] Byer R L. Quasi-phase-matched nonlinear interactions and devices. Journal of Nonlinear Optical Physics and Materials, 1997, 6(4): 549-592

    [3] Bisson S E, Armstong K M, Kulp T J, et al. Broadly tunable, mode-hop-tuned cw optical parametric oscillator based on periodically poled lithium niobate. Applied Optics, 2001, 40(33): 6049-6055

    [4] Bader U, Mattern T, Bauer T, et al. Pulsed nanosecond optical parametric generator based on periodically poled lithium niobate. Optics Communications, 2003, 217(1-6): 375-380

    [5] Orozco-Arellanes M J, Cudney R S. Indirectly-seeded optical parametric generation in periodically poled lithium niobate. Optics Express, 2003, 11(1): 20-26

    [6] Zhang J Y, Huang J Y, Shen Y R, et al. Optical parametric generation and amplification in barium borate and lithium triborate crystals. Journal of the Optical Society of America B, 1993, 10(9): 1758-1764

    [7] Chen Y L, Luo Y F, Yuan J W, et al. The research of quasicontinuous-wave output quasi-phase-matching second harmonic generation at 532 nm in periodically poled heavilydoped MgO:LiNbO3. Acta Optica Sinica, 2005, 25(1): 63-66 (in Chinese)

    [8] Mizuuchi K, Yamamoto K, Kato M. Harmonic blue light generation in bulk periodically poledMgO:LiNbO3. Electronics Letters, 1996, 32(22): 2091-2092

    [9] Cantelar E, De Paolo R E, Sanz-Garcia J A, et al. Secondharmonic generation in Zn-diffused periodically poled LiNbO3 channel waveguides. Applied Physics B, 2001, 73(5-6): 515-517

    [10] Guan Y Y, Haus J W, Powers P. Broadband and off-axis optical parametric generation in periodically poled LiNbO3. Journal of the Optical Society of America B, 2004, 21(6): 1225-1233

    [11] Yao J H, Liu Z W, Xue L P, et al. Low-threshold and temperature tunable optical parametrical oscillator based on periodically poled MgO:LiNbO3 crystal. Chinese Journal of Luminescence, 2007, 28(1): 18-22 (in Chinese)

    [12] Zhang B G, Yao J Q, Ding X, et al. Low-threshold, highefficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3. Chinese Physics, 2004, 13(3): 364-368

    [13] Wen J K, Wang L, Tang Y S, et al. Enhanced resistance to photorefraction and photovoltaic effect in Li-rich LiNbO3: Mg crystals. Applied Physics Letters, 1988, 53(4): 260-261

    [14] Capmany J, Montoya E, Bermudez V, et al. Self-frequency doubling in Yb3+ doped periodically poled LiNbO3:MgO bulk crystal. Applied Physics Letters, 2000, 76(11): 1374-1376

    [15] Zhong G G, Jin J, Wu Z K. Measure of optically induced refractive index damage of lithium niobate doped with different concentration of MgO. In: Proceedings of 11th International Quantum Electronic Conference. Washington: IEEE, 1980, 80: 631-633

    [16] Yao J H, Yan B X, Chen Y H, et al. Periodically poled second harmonic green light generation in near-stoichiometric MgOdoped LiNbO3 crystal. Laser Technology, 2004, 28(2): 141-143 (in Chinese)

    [17] Yan B X, Yao J H, Chen Y H, et al. Study on periodically poled characteristics of MgO:LiNbO3 and second harmonic green light generation. Journal of Infrared and Millimeter Waves, 2005, 24(3): 213-216 (in Chinese)

    [18] Yao J H, Chen Y H, Xu J J, et al. Study on periodical poling domain reversal characteristics of near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2002, 51(1): 192-196 (in Chinese)

    [19] Yao J H, Xu J J, Zhang G Y, et al. Domain reversal characteristics of near-stoichiometric LiNbO3 crystals. Chinese Physics Letters, 2000, 17(7): 513-514

    [20] Yao J H, Chen Y H, Yan B X, et al. Characteristics of domain inversion in magnesium-oxide-doped lithium niobate. Physica B, 2004, 352(1-4): 294-298

    [21] Nakamura K, Kurz J, Parameswaran K, et al. Periodic poling of magnesium-oxide-doped lithium niobate. Journal of Applied Physics, 2002, 91(7): 4528-4534

    Jianghong YAO, Liangping XUE, Boxia YAN, Guozhi JIA, Jingjun XU, Guangyin ZHANG. Temperature tunable infrared optical parametric generation based on periodically poled MgO:LiNbO3 crystals[J]. Frontiers of Optoelectronics, 2008, 1(1): 109
    Download Citation