• Frontiers of Optoelectronics
  • Vol. 13, Issue 4, 360 (2020)
Tatiana A. SAVELIEVA1、2、*, Marina N. KURYANOVA2, Ekaterina V. AKHLYUSTINA2, Kirill G. LINKOV1, Gennady A. MEEROVICH1、2, and Victor B. LOSCHENOV1、2
Author Affiliations
  • 1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
  • 2National Research Nuclear University MEPhI, Moscow115409, Russia
  • show less
    DOI: 10.1007/s12200-020-1094-z Cite this Article
    Tatiana A. SAVELIEVA, Marina N. KURYANOVA, Ekaterina V. AKHLYUSTINA, Kirill G. LINKOV, Gennady A. MEEROVICH, Victor B. LOSCHENOV. Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties[J]. Frontiers of Optoelectronics, 2020, 13(4): 360 Copy Citation Text show less
    References

    [1] Loschenov V B, Linkov K G, Savelieva T A, Loschenov M V, Model S S, Borodkin A V. Hardware and tool equipment for fluorescence diagnostics and photodynamic therapy. Photodynamic Therapy and Photodyagnosis, 2013, 2(3): 17-25

    [2] Meerovich G A, Tiganova I G, Makarova E A, Meerovich I G, Romanova J, Tolordova E R, Alekseeva N V, Stepanova T V, Yu K, Lukyanets E A, Krivospitskaya N V, Sipailo I P, Baikova T V, Loschenov V B, Gonchukov S A. Photodynamic inactivation of bacteria and biofilms using cationic bacteriochlorins. Journal of Physics: Conference Series, 2016, 691: 012011

    [3] Meerovich G A, Akhlyustina E V, Tiganova I G, Panov V A, Tyukova V S, Tolordava E R, Alekseeva N V, Linkov K G, Romanova Yu M, Grin M A, Mironov A F, Loshchenov V B, Kaprin A D, Filonenko E V. Study of photosensitizer for antibacterial photodynamic therapy based on cyclodextrin formulation of 133-n-(n-methylnicotinyl)bacteriopurpurinimide methyl ester. Biomedical Photonics, 2017, 6(3): 16-32

    [4] Bradley R S, Thorniley M S. A review of attenuation correction techniques for tissue fluorescence. Journal of the Royal Society, Interface, 2006, 3(6): 1-13

    [5] Haj-Hosseini N, Lowndes S, Salerud G, W?rdell K. Blood interference in fiber-optical based fluorescence guided resection of glioma using 5-aminolevulinic acid. In: Proceedings of SPIE 7883, Photonic Therapeutics and Diagnostics. San Francisco: SPIE, 2011, VII: 78833R

    [6] Zhang Y, Hou H, Zhang Y,Wang Y, Zhu L, Dong M, Liu Y. Tissue intrinsic fluorescence recovering by an empirical approach based on the PSO algorithm and its application in type 2 diabetes screening. Biomedical Optics Express, 2018, 9(4): 1795-1808

    [7] J?bsis F F, O’Connor M, Vitale A, Vreman H. Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. Journal of Neurophysiology, 1971, 34(5): 735-749

    [8] Kramer R S, Pearlstein R D. Cerebral cortical microfluorometry at isosbestic wavelengths for correction of vascular artifact. Science, 1979, 205(4407): 693-696

    [9] anpolat M, Mourant J R. Optical measurement of photosensitizer concentration using a probe with a small source-detector fiber separation. Proceedings of the Society for Photo-Instrumentation Engineers, 2000, 3911: 10-18

    [10] Meerovich G A, Akhlyustina E V, Savelieva T A, Linkov K G, Loschenov V B. Optical spectroanalyzer with extended dynamic range for pharmacokinetic investigations of photosensitizers in biotissue. Biomedical Photonics, 2019, 8(1): 46-51

    [11] Studinski R C, Vitkin I A. Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction. Journal of Biomedical Optics, 2000, 5(3): 330-337

    [12] Kalyagina N, Loschenov V, Wolf D, Daul C, Blondel W, Savelieva T. Experimental and Monte Carlo investigation of visible diffusereflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall. Applied Physics B, Lasers and Optics, 2011, 105(3): 631-639

    [13] Kalkman J, Bykov A V, Faber D J, van Leeuwen T G. Multiple and dependent scattering effects in Doppler optical coherence tomography. Optics Express, 2010, 18(4): 3883-3892

    [14] Martelli F, Zaccanti G. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method. Optics Express, 2007, 15(2): 486-500

    [15] Di Ninni P, Martelli F, Zaccanti G. Effect of dependent scattering on the optical properties of Intralipid tissue phantoms. Biomedical Optics Express, 2011, 2(8): 2265-2278

    [16] Michels R, Foschum F, Kienle A. Optical properties of fat emulsions. Optics Express, 2008, 16(8): 5907-5925

    [17] Prahl S. Optical absorption of hemoglobin. Available at omlc.org/ spectra/hemoglobin/

    [18] Delpy D T, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine and Biology, 1988, 33(12): 1433-1442

    [19] Savelieva T A, Loshchenov V B, Goryainov S A, Shishkina L V, Potapov A A. A spectroscopic method for simultaneous determination of protoporphyrin IX and hemoglobin in the nerve tissues at intraoperative diagnosis. Russian Journal of General Chemistry, 2015, 85(6): 1549-1557

    [20] Goryaynov S A, Okhlopkov V A, Golbin D A, Chernyshov K A, Svistov D V, Martynov B V, Kim A V, Byvaltsev V A, Pavlova G V, Batalov A, Konovalov N A, Zelenkov P V, Loschenov V B, Potapov A A. Fluorescence diagnosis in neurooncology: retrospective analysis of 653 cases. Frontiers in Oncology, 2019, 9: 830

    Tatiana A. SAVELIEVA, Marina N. KURYANOVA, Ekaterina V. AKHLYUSTINA, Kirill G. LINKOV, Gennady A. MEEROVICH, Victor B. LOSCHENOV. Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties[J]. Frontiers of Optoelectronics, 2020, 13(4): 360
    Download Citation