• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802011 (2021)
Hui Ren1, Hongqiang Zhang2, Wengan Wang1, Qiang Jia1..., Peng Peng2 and Guisheng Zou1,*|Show fewer author(s)
Author Affiliations
  • 1Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 2School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/CJL202148.0802011 Cite this Article Set citation alerts
    Hui Ren, Hongqiang Zhang, Wengan Wang, Qiang Jia, Peng Peng, Guisheng Zou. Low-Temperature Sintering and Joint Reliability of Metal Nano-Particle Paste[J]. Chinese Journal of Lasers, 2021, 48(8): 0802011 Copy Citation Text show less
    References

    [1] Ryu S H, Agarwal A K, Singh R et al. 1800 V NPN bipolar junction transistors in 4H-SiC[J]. IEEE Electron Device Letters, 22, 124-126(2001). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=910617

    [2] Chen W T, Tseng A. Overview of recent developments in microelectronic packaging[C]. //Advances in Electronic Materials and Packaging 2001 (Cat. No.01EX506), November 19-22, 2001, Jeju, Korea (South), 15-16(2001).

    [3] Itoh A, Matsunami H. Analysis of Schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices[J]. Physica Status Solidi (a), 162, 389-408(1997). http://onlinelibrary.wiley.com/doi/10.1002/1521-396X(199707)162:1<389::AID-PSSA389>3.0.CO;2-X/abstract

    [4] Dreike P L, Fleetwood D M, King D B et al. An overview of high-temperature electronic device technologies and potential applications[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17, 594-609(1994). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020418598799.html

    [5] Kenneth F G, Ronald D S. Interaction of radiation with semiconductor devices[M]. //Cressler J D, Mantooth H A. Extreme Environment Electronics., 79-91(2017).

    [6] Schwarzbauer H. Method and arrangement for connecting a semiconductor to a substrate or for after-treatment of a semiconductor-to-substrate connection with contact-free pressing:US5158226[P](1992).

    [7] Schwarzbauer H, Kuhnert R. Novel large area joining technique for improved power device performance[J]. IEEE Transactions on Industry Applications, 27, 93-95(1991). http://ieeexplore.ieee.org/document/67536/references

    [8] Siow K S. Are sintered silver joints ready for use as interconnect material in microelectronic packaging?[J]. Journal of Electronic Materials, 43, 947-961(2014). http://link.springer.com/article/10.1007/s11664-013-2967-3

    [9] Lu D, Wong C P. Materials for advanced packaging[M]. Boston: Springer(2009).

    [10] Guo S J. Powder metallurgy sintering theory[M](1998).

    [11] Kang S J L. Grain growth and densification in porous materials[M]. // Kang S J L. Sintering. Amsterdam: Elsevier, 145-170(2005).

    [12] Ruan J M, Huang P Y. Powder metallurgy principle[M](2012).

    [13] Göbl C, Faltenbacher J. Low temperature sinter technology die attachment for power electronic applications[C]. //2010 6th International Conference on Integrated Power Electronics Systems, March 16-18, 2010, Nuremberg, Germany., 1-5(2010).

    [14] Zheng H G, Berry D, Ngo K D T et al. Chip-bonding on copper by pressureless sintering of nanosilver paste under controlled atmosphere[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4, 377-384(2014). http://ieeexplore.ieee.org/document/6705630/references

    [15] Sakamoto S, Sugahara T, Suganuma K et al. Microstructural stability of Ag sinter joining inthermal cycling[J]. Journal of Materials Science: Materials in Electronics, 24, 1332-1340(2013). http://link.springer.com/article/10.1007%2Fs10854-012-0929-9

    [16] Wang S, Ji H J, Li M Y et al. Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles[J]. Materials Letters, 85, 61-63(2012).

    [17] Buttay C, Masson A, Li J et al. Die attach of power devices using silver sintering: bonding process optimization and characterization[EB/OL]. (2012-02-21)[2020-11-30]. https://link.springer.com/article/10.1007/s12540-017-6908-1

    [18] Yan J F, Zou G S, Hu A M et al. Preparation of PVP coated Cu NPs and the application for low-temperature bonding[J]. Journal of Materials Chemistry, 21, 15981-15986(2011). http://pubs.rsc.org/en/content/articlelanding/2011/jm/c1jm12108a/unauth

    [19] Mei Y H, Li L, Li X et al. Electric-current-assisted sintering of nanosilver paste for copper bonding[J]. Journal of Materials Science: Materials in Electronics, 28, 9155-9166(2017). http://link.springer.com/10.1007/s10854-017-6649-4

    [20] Wang M Y, Xie Y J, Mei Y H et al. Die-attach on copper by pressureless silver sintering in formic acid[C]. //2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 19-23, 2019, Shanghai, China., 499-502(2019).

    [21] Yu F, Cui J Z, Zhou Z M et al. Reliability of Ag sintering for power semiconductor die attach in high-temperature applications[J]. IEEE Transactions on Power Electronics, 32, 7083-7095(2017).

    [22] Subbiah N, Schiffmacher A, Song X et al. Comparison of silver sintered assemblies on non-DCB substrates[C]. //CIPS 2020; 11th International Conference on Integrated Power Electronics Systems, March 24-26, 2020, Berlin, Germany. Hannover: VDE Verlag Gmbh, 1-7(2020).

    [23] Zhang H Q, Wang W G, Bai H L et al. Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds, 774, 487-494(2019). http://www.sciencedirect.com/science/article/pii/S0925838818337332

    [24] Zhang Z, Chen C T, Zhang H et al. Ag joint bonding technology for bare copper substrate in low temperature, pressureless and air condition[C]. //2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), April 17-21, 2018, Mie, Japan., 55-58(2018).

    [25] Ide E, Angata S, Hirose A et al. Metal-metal bonding process using Ag metallo-organic nanoparticles[J]. Acta Materialia, 53, 2385-2393(2005). http://www.sciencedirect.com/science/article/pii/S1359645405000753

    [26] Wang W G, Zou G S, Jia Q et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering: A, 793, 139894(2020). http://www.sciencedirect.com/science/article/pii/S0921509320309667

    [27] Hausner S, Weis S, Elßner M et al. Low temperature joining of copper by Ag nanopaste:studies on the strength behavior[J]. Advanced Materials Research, 925, 420-427(2014). http://www.scientific.net/AMR.925.420

    [28] Yan J F, Zou G S, Wu A P et al. Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging[J]. Scripta Materialia, 66, 582-585(2012). http://www.sciencedirect.com/science/article/pii/S1359646212000231

    [29] Wang S, Li M Y, Ji H J et al. Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging[J]. Scripta Materialia, 69, 789-792(2013). http://www.sciencedirect.com/science/article/pii/S1359646213004363

    [30] Furukawa T, Shiraishi M, Yasuda Y et al. High power density side-gate HiGT modules with sintered Cu having superior high-temperature reliability to sintered Ag[C]. //2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), May 28-June 1, 2017, Sapporo, Japan., 263-266(2017).

    [31] Yamakawa T, Takemoto T, Shimoda M et al. Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste[J]. Journal of Electronic Materials, 42, 1260-1267(2013). http://link.springer.com/article/10.1007/s11664-013-2583-2

    [32] Nishikawa H, Hirano T, Takemoto T et al. Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste[J]. The Open Surface Science Journal, 3, 60-64(2011). http://adsabs.harvard.edu/abs/2010OSSJ....3...60N

    [33] Ishizaki T, Kuno A, Tane A et al. Reliability of Cu nanoparticle joint for high temperature power electronics[J]. Microelectronics Reliability, 54, 1867-1871(2014).

    [34] Ren H, Mu F W, Shin S et al. Low temperature Cu bonding with large tolerance of surface oxidation[J]. AIP Advances, 9, 055127(2019). http://www.researchgate.net/publication/333509331_Low_temperature_Cu_bonding_with_large_tolerance_of_surface_oxidation

    [35] Kim K S, Jung K H, Park B G et al. Characterization of Ag-Pd nanocomposite paste for electrochemical migration resistance[J]. Journal of Nanoscience and Nanotechnology, 13, 7620-7624(2013). http://www.ncbi.nlm.nih.gov/pubmed/24245303

    [36] Morisada Y, Nagaoka T, Fukusumi M et al. A low-temperature bonding process using mixed Cu-Ag nanoparticles[J]. Journal of Electronic Materials, 39, 1283-1288(2010). http://link.springer.com/article/10.1007/s11664-010-1195-3

    [37] Hsiao C H, Kung W T, Song J M et al. Development of Cu-Ag pastes for high temperature sustainable bonding[J]. Materials Science and Engineering: A, 684, 500-509(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=e95b778cab4483a491ff47230452834f

    [38] Manikam V R, Razak K A, Cheong K Y et al. Sintering of silver-aluminum nanopaste with varying aluminum weight percent for use as a high-temperaturedie-attach material[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2, 1940-1948(2012). http://ieeexplore.ieee.org/document/6334434

    [39] Zhao Z Y. Research on thermal conductivity and reliability of porous sintered die attach using nano-ag for SiC electronics[D]. Beijing: Tsinghua University(2018).

    [40] Schmitt W, Fritzsche S, Thomas M et al. Sinter materials for broad process windows in DCB packages-concepts and results[C]. //2012 7th International Conference on Integrated Power Electronics Systems (CIPS), March 6-8, 2012, Nuremberg, Germany., 1-6(2012).

    [41] Zhao Y M, Wu Y B, Evans K et al. Evaluation of Ag sintering die attach for high temperature power module applications[C]. //2014 15th International Conference on Electronic Packaging Technology, August 12-15, 2014, Chengdu, China., 200-204(2014).

    [42] Dutt G, Durham J, Koep P et al. Sintered silver interconnects for traction inverter assembly[C]. // PCIM Asia 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, June 26-28, 2019, Shanghai World Expo Exhibition and Convention Center, Shanghai, China. Frankfurt: VDE, 1-5(2019).

    [43] Egelkraut S, Frey L, Knoerr M et al. Evolution of shear strength and microstructure of die bonding technologies for high temperature applications during thermal aging[C]. //2010 12th Electronics Packaging Technology Conference, December 8-10, 2010, Singapore., 660-667(2010).

    [44] Lang F Q, Nakagawa H, Aoyagi M et al. Impact of joint materials on the reliability of double-side packaged SiC power devices during high temperature aging[J]. Journal of Materials Science: Materials in Electronics, 21, 917-925(2010). http://link.springer.com/article/10.1007/s10854-009-0018-x

    [45] Morita T, Ide E, Yasuda Y et al. Study of bonding technology using silver nanoparticles[J]. Japanese Journal of Applied Physics, 47, 6615-6622(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&amp;id=VIRT01000018000012000125000001&amp;idtype=cvips&amp;gifs=Yes

    [46] Paknejad S A, Mannan S H. Review of silver nanoparticle baseddie attach materials for high power/temperature applications[J]. Microelectronics Reliability, 70, 1-11(2017). http://www.sciencedirect.com/science/article/pii/S0026271417300161

    [47] Pešina Z, Vykoukal V, Palcut M et al. Shear strength of copper joints prepared by low temperature sintering of silver nanoparticles[J]. Electronic Materials Letters, 10, 293-298(2014).

    [48] Chen C T, Zhang Z, Choe C et al. Improvement of the bond strength of Ag sinter-joining on electroless Ni/Au plated substrate by a one-step preheating treatment[J]. Journal of Electronic Materials, 48, 1106-1115(2019). http://link.springer.com/article/10.1007/s11664-018-06842-8

    [51] Notsu H, Michikoshi H, Fukuda K et al. A full SiC module operational at 200 ℃ junction realized by a new fatigue-free structure[C]. //PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, July 27, 2017, Nuremberg, Germany. TIB Hannover, Germany: VDE Verlag Gmbh, 1-5(2017).

    [52] Wilcoxon R, Dimke M, Xie C G et al. Thermal performance and reliability assessment of nano-sintered silver die attach materials[C]. // 2015 31st Thermal Measurement, Modeling Management Symposium (SEMI-THERM), March 15-19, 2015, San Jose, CA, USA., 240-247(2015).

    [53] Knoerr M, Kraft S, Schletz A et al. Reliability assessment of sintered nano-silverdie attachment for power semiconductors[C]. //2010 12th Electronics Packaging Technology Conference, December 8-10, 2010, Singapore., 56-61(2010).

    [54] Sakamoto S, Sugahara T, Suganuma K et al. Microstructural stability of Ag sinter joining in thermal cycling[J]. Journal of Materials Science: Materials in Electronics, 24, 1332-1340(2013). http://link.springer.com/article/10.1007%2Fs10854-012-0929-9

    [55] Hutzler A, Zeyss F, Vater S et al. Power cycling community 1995-2014: an overview of test results over the last 20 years[EB/OL]. [2020-11-30]. http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-2906632.pdf

    [56] Bayerer R, Herrmann T, Licht T et al. Model forpower cycling lifetime of IGBT modules: various factors influencing lifetime[C]. //5th International Conference on Integrated Power Electronics Systems, March 11-13, 2008, Nuremberg, Germany. Hannover: VDE Verlag Gmbh, 1-6(2008).

    [57] Dudek R, Döring R, Rzepka S et al. Investigations on power cycling induced fatigue failure of IGBTs with silver sinterea interconnects[C]. //2015 European Microelectronics Packaging Conference (EMPC), September 14-16, 2015, Friedrichshafen, Germany., 1-8(2015).

    [58] Dudek R, Doering R, Rzepka S et al. Coupled electro-thermo-mechanical analyses on power cycling induced loadings in sintered silver IGBT-modules with and without overmolding[C]. //CIPS 2016; 9th International Conference on Integrated Power Electronics Systems, March 8-10, 2016, Nuremberg, Germany. Hannover: VDE Verlag Gmbh, 1-6(2016).

    [59] Smet V, Forest F, Huselstein J J et al. Ageing and failure modes of IGBT modules inhigh-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 58, 4931-4941(2011).

    [60] Choi U M, Blaabjerg F, Jørgensen S et al. Power cycling test methods for reliability assessment of power device modules in respect to temperature stress[J]. IEEE Transactions on Power Electronics, 33, 2531-2551(2018).

    [61] Kraft S, Schletz A, Maerz M et al. Reliability of silver sintering on DBC and DBA substrates for power electronic applications[C]. //2012 7th International Conference on Integrated Power Electronics Systems (CIPS), March 6-8, 2012, Nuremberg, Germany., 1-6(2012).

    [62] Osonoe K, Asai T, Aoki M et al. Comparison of thermal stress concentration and profile between power cycling test and thermal cycling test for power device heat dissipation structures using Ag sintering chip-attachment[C]. //2016 International Conference on Electronics Packaging (ICEP), April 20-22, 2016, Hokkaido, Japan., 631-634(2016).

    Hui Ren, Hongqiang Zhang, Wengan Wang, Qiang Jia, Peng Peng, Guisheng Zou. Low-Temperature Sintering and Joint Reliability of Metal Nano-Particle Paste[J]. Chinese Journal of Lasers, 2021, 48(8): 0802011
    Download Citation