• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 10, 100001 (2024)
Chuankai SHEN1, Baoliang ZHANG1,*, Wenguan LIU2,**, Hanzi ZHANG1..., Menghe TU1, Bin LONG1 and Hui WANG1|Show fewer author(s)
Author Affiliations
  • 1China Institute of Atomic Energy, Beijing 102413, China
  • 2Sun Yat-Sen University, Zhuhai 519082, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.100001 Cite this Article
    Chuankai SHEN, Baoliang ZHANG, Wenguan LIU, Hanzi ZHANG, Menghe TU, Bin LONG, Hui WANG. Research status of density functional theory in corrosion of reactor alloy materials[J]. NUCLEAR TECHNIQUES, 2024, 47(10): 100001 Copy Citation Text show less
    References

    [1] Born M, Heisenberg W, Blum W, Rechenberg H, Dürr H P. Zur quantentheorie der molekeln[M]. Original Scientific Papers Wissenschaftliche Originalarbeiten, 216-246(1985).

    [2] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 136, B864(1964).

    [3] Thomas L H. The calculation of atomic fields[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 23, 542-548(1927).

    [4] Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell'atome[J]. Rend Accad Naz Lincei, 6, 32(1927).

    [5] Fock V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems[J]. Zeitschrift Für Physik, 61, 126-148(1930).

    [6] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 140, A1133-A1138(1965).

    [7] Chadi D J, Cohen M L. Special points in the Brillouin zone[J]. Physical Review B, 8, 5747-5753(1973).

    [8] Mosey N J, Carter E A. Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations[J]. Physical Review B, 76, 155123(2007).

    [9] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, Condensed Matter, 41, 7892-7895(1990).

    [10] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations[J]. Physical Review B, Condensed Matter, 43, 1993-2006(1991).

    [11] Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 50, 1-17979(1994).

    [12] Schleder G R, Padilha A C M, Acosta C M et al. From DFT to machine learning: recent approaches to materials science–a review[J]. Journal of Physics: Materials, 2, 032001(2019).

    [13] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 54, 1-11186(1996).

    [14] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 47, 558-561(1993).

    [15] Segall M D, Lindan P J D, Probert M J et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 14, 2717-2744(2002).

    [16] Soler J M, Artacho E, Gale J D et al. The SIESTA method for ab initio order-N materials simulation[J]. Journal of Physics: Condensed Matter, 14, 2745-2779(2002).

    [17] Liu Z, Hu W, Deng H. Atomistic insights into interactions between oxygen and alpha-Zr (10(1)over-bar1) surface[J]. Nuclear Materials and Energy, 27, 100974(2021).

    [18] Wang F H, Liu S Y, Shang J X et al. Oxygen adsorption on Zr(0001) surfaces: Density functional calculations and a multiple-layer adsorption model[J]. Surface Science, 602, 2212-2216(2008).

    [19] Zhang H H, Xie Y P, Yao M Y et al. Effects of oxygen chemical potential on the anisotropy of the adsorption properties of Zr surfaces[J]. Physical Chemistry Chemical Physics, 20, 1-14419(2018).

    [20] Nicholls R J, Ni N, Lozano-Perez S et al. Crystal structure of the ZrO phase at zirconium/zirconium oxide interfaces[J]. Advanced Engineering Materials, 17, 211-215(2015).

    [21] Jong J Y, Hong S J, Ko P C et al. Effects of alloying elements on hydrogen adsorption properties on zirconium surface[J]. Metallurgical and Materials Transactions A, 54, 286-292(2023).

    [22] Glazoff M V, Tokuhiro A, Rashkeev S N et al. Oxidation and hydrogen uptake in zirconium, Zircaloy-2 and Zircaloy-4: Computational thermodynamics and ab initio calculations[J]. Journal of Nuclear Materials, 444, 65-75(2014).

    [23] Haurat E, Crocombette J P, Tupin M. Interactions of hydrogen with zirconium alloying elements and oxygen vacancies in monoclinic zirconia[J]. Acta Materialia, 225, 117547(2022).

    [24] Feng M L, Liu G D, Liu Z X et al. Interaction between impurity elements (C, N and O) and hydrogen in hcp-Zr: a first-principles study[J]. Modelling and Simulation in Materials Science and Engineering, 28, 085007(2020).

    [25] Liu S M, Ishii A, Mi S B et al. Dislocation-mediated hydride precipitation in zirconium[J]. Small, 18, e2105881(2022).

    [26] Zhu X Y, Lin D Y, Fang J et al. Structure and thermodynamic properties of zirconium hydrides by structure search method and first principles calculations[J]. Computational Materials Science, 150, 77-85(2018).

    [27] Udagawa Y, Yamaguchi M, Abe H et al. Ab initio study on plane defects in zirconium–hydrogen solid solution and zirconium hydride[J]. Acta Materialia, 58, 3927-3938(2010).

    [28] Olsson P A T, Kese K, Alvarez Holston A M. On the role of hydrogen filled vacancies on the embrittlement of zirconium: an ab initio investigation[J]. Journal of Nuclear Materials, 467, 311-319(2015).

    [29] Legris A, Domain C. Ab initio atomic-scale modelling of iodine effects on hcp zirconium[J]. Philosophical Magazine, 85, 589-595(2005).

    [30] Podgurschi V, King D J M, Smutna J et al. Atomistic modelling of iodine-oxygen interactions in strained sub-oxides of zirconium[J]. Journal of Nuclear Materials, 558, 153394(2022).

    [31] Tu R, Liu Q, Zeng C et al. First principles study of point defect effects on iodine diffusion in zirconium[J]. Nuclear Materials and Energy, 16, 238-244(2018).

    [32] Rossi M L, Taylor C D. Equations of state for crystalline zirconium iodide: The role of dispersion[J]. Journal of Nuclear Materials, 433, 30-36(2013).

    [33] Rossi M L, Taylor C D. First-principles insights into the nature of zirconium–iodine interactions and the initiation of iodine-induced stress–corrosion cracking[J]. Journal of Nuclear Materials, 458, 1-10(2015).

    [34] Rák Z, Brenner D W. Ab initio investigation of the surface properties of austenitic Fe-Ni-Cr alloys in aqueous environments[J]. Applied Surface Science, 402, 108-113(2017).

    [35] Wei J, Li S, Zhou W et al. First-principles investigation of water adsorption on FeCrAl(110) surfaces[J]. Applied Surface Science, 465, 259-266(2019).

    [36] Li X J, Ma Y, Zhou W Z et al. Hydrogen atom and molecule adsorptions on FeCrAl(100) surface: a first-principle study[J]. Frontiers in Energy Research, 9, 713493(2021).

    [37] Li X J, Ma Y, Zhou W Z et al. Spin-polarized DFT calculations of elemental effects on hydrogen atom adsorption on FeCrAl(110) surface[J]. Applied Surface Science, 581, 152273(2022).

    [38] Liu Z J, Zhang Y G, Li X Y et al. Investigation of the dissolution and diffusion properties of interstitial oxygen at grain boundaries in body-centered-cubic iron by the first-principles study[J]. RSC Advances, 11, 8643-8653(2021).

    [39] Li M, Natesan K, Momozaki Y et al. Report on sodium compatibility of advanced structural materials[R](2012).

    [40] Gromov B F, Belomitcev Y S, Yefimov E I et al. Use of lead-bismuth coolant in nuclear reactors and accelerator-driven systems[J]. Nuclear Engineering and Design, 173, 207-217(1997).

    [41] Malang S, Borgstedt H U, Farnum E H et al. Development of insulating coatings for liquid metal blankets[J]. Fusion Engineering and Design, 27, 570-586(1995).

    [42] Han J H, Oda T. Chemical origin of differences in steel corrosion behaviors of s-electron and p-electron liquid metals by first-principles calculation[J]. Physical Chemistry Chemical Physics, 21, 2-25924(2019).

    [43] Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 373, 351-377(2008).

    [44] Tsisar V, Kondo M, Xu Q et al. Effect of nitrogen on the corrosion behavior of RAFM JLF-1 steel in lithium[J]. Journal of Nuclear Materials, 417, 1205-1209(2011).

    [45] Gil J, Oda T. Solution enthalpy calculation for impurity in liquid metal by first-principles calculations: a benchmark test for oxygen impurity in liquid sodium[J]. The Journal of Chemical Physics, 152, 154503(2020).

    [46] Kikuchi S, Kurihara A, Ohshima H et al. Reactivity of a water molecule at the liquid sodium surface[J]. Transactions of the Atomic Energy Society of Japan, 11, 147-157(2012).

    [47] Kim S J, Park G, Kim M H et al. A theoretical study of Ti nanoparticle effect on sodium water reaction: using ab initio calculation[J]. Nuclear Engineering and Design, 281, 15-21(2015).

    [48] Li X, Samin A, Zhang J S et al. Ab-initio molecular dynamics study of lanthanides in liquid sodium[J]. Journal of Nuclear Materials, 484, 98-102(2017).

    [49] Samin A, Li X, Zhang J S et al. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1 000 K temperature[J]. Journal of Applied Physics, 118, 234902(2015).

    [50] Long X L, Shi J L, Zhu J et al. First-principles calculation of the resistance to lead-bismuth eutectic corrosion on Fe(111) surface of austenitic stainless steel[J]. Surface Science, 725, 122132(2022).

    [51] Song C, Li D D, Xu Y C et al. Corrosion related properties of iron (100) surface in liquid lead and bismuth environments: a first-principles study[J]. Chinese Physics B, 23, 056801(2014).

    [52] Li Y F, Zhou R Y, Long X L et al. First-principles study on the corrosion-resistant of lead-bismuth to rough stainless steel surface[J]. Journal of Nuclear Materials, 583, 154492(2023).

    [53] Liu T, Hui J, Zhang B L et al. Corrosion mechanism of lead-bismuth eutectic at grain boundary in ferritic steels and the effect of alloying elements: a first-principles study[J]. Journal of Nuclear Materials, 569, 153915(2022).

    [54] Liu T, Zhang B L, Yin H Q et al. First-principles study on the corrosion resistance of iron oxide surface and grain boundary in austenitic steel to lead–bismuth eutectic[J]. Applied Surface Science, 640, 158409(2023).

    [55] Zhou R Y, Zhang R J, Gao T et al. Interfacial corrosion behavior between O atoms and alloy elements at iron-liquid LBE interface by first-principles molecular dynamics[J]. Solid State Ionics, 390, 116112(2023).

    [56] Ding W Y, Jiang Z Z, Xin J P et al. Interactions between alloy elements and oxygen at the steel-liquid LBE interface determined from first-principles molecular dynamics simulations[J]. Physical Chemistry Chemical Physics: PCCP, 21, 2-25742(2019).

    [57] Xu Y C, Zhang Y G, Li X Y et al. The adsorption and dissolution properties of iron surfaces in liquid lithium and lead under a fusion environment[J]. Journal of Nuclear Materials, 524, 200-208(2019).

    [58] Li Y, Yu X G. First-principles study of the diffusion of Li in bcc Fe[J]. Fusion Engineering and Design, 148, 111285(2019).

    [59] Liu W G, Ren C L, Han H et al. First-principles study of the effect of phosphorus on nickel grain boundary[J]. Journal of Applied Physics, 115, 043706(2014).

    [60] Liu W G, Han H, Ren C L et al. The effect of Nb additive on Te-induced stress corrosion cracking in Ni alloy: a first-principles calculation[J]. Nuclear Science and Techniques, 25, 050603(2014).

    [61] LIU Wenguan. First-principles study of intergranular embrittlement in Ni-based alloy[D](2014).

    [63] Ai H, Ye X X, Jiang L et al. On the possibility of severe corrosion of a Ni-W-Cr alloy in fluoride molten salts at high temperature[J]. Corrosion Science, 149, 218-225(2019).

    [64] Winner N, Williams H, Scarlat R O et al. Ab-initio simulation studies of chromium solvation in molten fluoride salts[J]. Journal of Molecular Liquids, 335, 116351(2021).

    [65] Li Q J, Sprouster D, Zheng G Q et al. Complex structure of molten NaCl–CrCl3 salt: Cr–Cl octahedral network and intermediate-range order[J]. ACS Applied Energy Materials, 4, 3044-3056(2021).

    [66] Hanson K, Sankar K M, Weck P F et al. Effect of excess Mg to control corrosion in molten MgCl2 and KCl eutectic salt mixture[J]. Corrosion Science, 194, 109914(2022).

    [67] Doležal T D, Samin A J. A first-principles study on the early-stage corrosion of a NiWNb alloy in a chloride salt environment[J]. Journal of Nuclear Materials, 582, 154457(2023).

    [68] Lu L L, Jia Y Y, Ye X X et al. Local structure study of tellurium corrosion of nickel alloy by X-ray absorption spectroscopy[J]. Corrosion Science, 108, 169-172(2016).

    Chuankai SHEN, Baoliang ZHANG, Wenguan LIU, Hanzi ZHANG, Menghe TU, Bin LONG, Hui WANG. Research status of density functional theory in corrosion of reactor alloy materials[J]. NUCLEAR TECHNIQUES, 2024, 47(10): 100001
    Download Citation