• Advanced Photonics
  • Vol. 7, Issue 3, 034004 (2025)
Huaping Jia1, Fengjia Xie1, Elyes Nefzaoui2, Tarik Bourouina2,3..., Heng Jiang1,* and Xuming Zhang1,4,*|Show fewer author(s)
Author Affiliations
  • 1The Hong Kong Polytechnic University, Photonics Research Institute, Department of Applied Physics, Hong Kong, China
  • 2Université Gustave Eiffel, ESYCOM Lab, UMR 9007 CNRS, Marne-la-Vallée, France
  • 3Nanyang Technological University, CINTRA, IRL 3288 CNRS-NTU-THALES, Singapore
  • 4The Hong Kong Polytechnic University, Research Institute for Advanced Manufacturing (RIAM), Hong Kong, China
  • show less
    DOI: 10.1117/1.AP.7.3.034004 Cite this Article Set citation alerts
    Huaping Jia, Fengjia Xie, Elyes Nefzaoui, Tarik Bourouina, Heng Jiang, Xuming Zhang, "Black silicon nanostructures for solar energy conversion and photonic applications: a review," Adv. Photon. 7, 034004 (2025) Copy Citation Text show less
    References

    [1] H. Nishiyama et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature, 598, 304-307(2021). https://doi.org/10.1038/s41586-021-03907-3

    [2] J. L. Young et al. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy, 2, 17028(2017). https://doi.org/10.1038/nenergy.2017.28

    [3] J. Liu et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 347, 970-974(2015).

    [4] D. Gunawan et al. Materials advances in photocatalytic solar hydrogen production: integrating systems and economics for a sustainable future. Adv. Mater., 36, 2404618(2024). https://doi.org/10.1002/adma.202404618

    [5] L. Zhang, Y. Wang. Decoupled artificial photosynthesis. Angew. Chem. Int. Ed., 62, e202219076(2023).

    [6] X. Li et al. Water splitting: from electrode to green energy system. Nano-Micro Lett., 12, 131(2020).

    [7] P. Tao et al. Solar-driven interfacial evaporation. Nat. Energy, 3, 1031-1041(2018). https://doi.org/10.1038/s41560-018-0260-7

    [8] S. Tembhurne, F. Nandjou, S. Haussener. A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation. Nat. Energy, 4, 399-407(2019). https://doi.org/10.1038/s41560-019-0373-7

    [9] T. S. Teitsworth et al. Water splitting with silicon p–i–n superlattices suspended in solution. Nature, 614, 270-274(2023). https://doi.org/10.1038/s41586-022-05549-5

    [10] S. Li et al. Surface/interface engineering of Si-based photocathodes for efficient hydrogen evolution. ACS Photonics, 9, 3786-3806(2022). https://doi.org/10.1021/acsphotonics.2c00708

    [11] S. Y. Reece et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 334, 645-648(2011).

    [12] M. J. Kenney et al. High-performance silicon photoanodes. Science, 342, 836-840(2013).

    [13] J. Lv et al. Review application of nanostructured black silicon. Nanoscale Res. Lett., 13, 110(2018). https://doi.org/10.1186/s11671-018-2523-4

    [14] E. S. Kolesar, V. M. Bright, D. M. Sowders. Optical reflectance reduction of textured silicon surfaces coated with an antireflective thin film. Thin Solid Films, 290–291, 23-29(1996). https://doi.org/10.1016/S0040-6090(96)09064-5

    [15] Y. Liu et al. Nanostructure formation and passivation of large-area black silicon for solar cell applications. Small, 8, 1392-1397(2012). https://doi.org/10.1002/smll.201101792

    [16] C.-S. Yang et al. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure. Opt. Express, 20, A441-A451(2012). https://doi.org/10.1364/OE.20.00A441

    [17] M. C. Beard, R. J. Ellingson. Multiple exciton generation in semiconductor nanocrystals: toward efficient solar energy conversion. Laser Photonics Rev., 2, 377-399(2008). https://doi.org/10.1002/lpor.200810013

    [18] J. Yang et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci. Appl., 3, e185(2014). https://doi.org/10.1038/lsa.2014.66

    [19] M. Otto et al. Black silicon photovoltaics. Adv. Opt. Mater., 3, 147-164(2015). https://doi.org/10.1002/adom.201400395

    [20] X. Liu et al. Black silicon: fabrication methods, properties and solar energy applications. Energy Environ. Sci., 7, 3223-3263(2014). https://doi.org/10.1039/C4EE01152J

    [21] Z. Fan et al. Recent progress of black silicon: from fabrications to applications. Nanomaterials, 11, 41(2021).

    [22] J. Soueiti et al. A review of cost-effective black silicon fabrication techniques and applications. Nanoscale, 15, 4738-4761(2023). https://doi.org/10.1039/D2NR06087F

    [23] Q. Tan et al. Nano-fabrication methods and novel applications of black silicon. Sens. Actuators A Phys., 295, 560-573(2019). https://doi.org/10.1016/j.sna.2019.04.044

    [24] B. Fazio et al. Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array. Light Sci. Appl., 5, e16062(2016). https://doi.org/10.1038/lsa.2016.62

    [25] Z. Zhang et al. Black silicon with order-disordered structures for enhanced light trapping and photothermic conversion. Nano Energy, 65, 103992(2019). https://doi.org/10.1016/j.nanoen.2019.103992

    [26] M. Steglich et al. An ultra-black silicon absorber. Laser Photonics Rev., 8, 13-17(2014). https://doi.org/10.1002/lpor.201300142

    [27] M. Joshi, R. Verma. Black silicon photovoltaics: fabrication methods and properties. Int. J. Res. Eng. Sci., 5, 62-72(2017).

    [28] F. Priolo et al. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol., 9, 19-32(2014). https://doi.org/10.1038/nnano.2013.271

    [29] Y. Wang et al. Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater., 25, 5177-5195(2013). https://doi.org/10.1002/adma.201301943

    [30] J. Y. H. Chai, B. T. Wong, S. Juodkazis. Black-silicon-assisted photovoltaic cells for better conversion efficiencies: a review on recent research and development efforts. Mater. Today Energy, 18, 100539(2020). https://doi.org/10.1016/j.mtener.2020.100539

    [31] M. D. Kelzenberg et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater., 9, 239-244(2010). https://doi.org/10.1038/nmat2635

    [32] T. G. Allen et al. Passivating contacts for crystalline silicon solar cells. Nat. Energy, 4, 914-928(2019). https://doi.org/10.1038/s41560-019-0463-6

    [33] Z. Ying et al. Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule, 6, 2644-2661(2022). https://doi.org/10.1016/j.joule.2022.09.006

    [34] C. Xie et al. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. J. Mater. Chem A Mater., 1, 15348-15354(2013). https://doi.org/10.1039/c3ta13750c

    [35] A. Alsolami et al. Recent advances in black silicon surface modification for enhanced light trapping in photodetectors. Appl. Sci., 14, 9841(2024). https://doi.org/10.3390/app14219841

    [36] Z. Zhao et al. Black silicon for near-infrared and ultraviolet photodetection: a review. APL Mater., 11, 021107(2023).

    [37] Y. Gwon, J. H. Kim, S. W. Lee. Quantification of plasma dopamine in depressed patients using silver-enriched silicon nanowires as SERS-active substrates. ACS Sens., 9, 870-882(2024). https://doi.org/10.1021/acssensors.3c02202

    [38] F. Rauh et al. Nanostructured black silicon as a stable and surface-sensitive platform for time-resolved in situ electrochemical infrared absorption spectroscopy. ACS Appl. Mater. Interfaces, 16, 6653-6664(2024). https://doi.org/10.1021/acsami.3c17294

    [39] L. Golubewa et al. Surface-enhanced raman spectroscopy of organic molecules and living cells with gold-plated black silicon. ACS Appl. Mater. Interfaces, 12, 50971-50984(2020). https://doi.org/10.1021/acsami.0c13570

    [40] Y. Li et al. Evaluating the optical response of heavily decorated black silicon based on a realistic 3D modeling methodology. ACS Appl. Mater. Interfaces, 14, 36189-36199(2022). https://doi.org/10.1021/acsami.2c05652

    [41] L. Z. Samarah et al. Mass spectrometry imaging of bio-oligomer polydispersity in plant tissues by laser desorption ionization from silicon nanopost arrays. Angew. Chem. Int. Ed., 60, 9071-9077(2021). https://doi.org/10.1002/anie.202015251

    [42] J. Qian et al. Recent developments in porous silicon nanovectors with various imaging modalities in the framework of theranostics. ChemMedChem, 17, e202200004(2022). https://doi.org/10.1002/cmdc.202200004

    [43] S. A. Iakab et al. Gold nanoparticle-assisted black silicon substrates for mass spectrometry imaging applications. ACS Nano, 14, 6785-6794(2020). https://doi.org/10.1021/acsnano.0c00201

    [44] Y. Zhang et al. Scanning electron microscopy dopant contrast imaging of phosphorus-diffused silicon. Adv. Mater. Technol., 8, 2200737(2023). https://doi.org/10.1002/admt.202200737

    [45] S. Raman, A. Ravi Sankar, M. Sindhuja. Advances in silicon nanowire applications in energy generation, storage, sensing, and electronics: a review. Nanotechnology, 34, 182001(2023). https://doi.org/10.1088/1361-6528/acb320

    [46] K. Q. Peng, S. T. Lee. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater., 23, 198-215(2011). https://doi.org/10.1002/adma.201002410

    [47] G. Ayvazyan. Black Silicon: Formation, Properties, and Application(2024).

    [48] C. C. Striemer, P. M. Fauchet. Dynamic etching of silicon for broadband antireflection applications. Appl. Phys. Lett., 81, 2980-2982(2002). https://doi.org/10.1063/1.1514832

    [49] S. K. Srivastava et al. Nanostructured black silicon for efficient thin silicon solar cells: potential and challenges. Recent Advances in Thin Films, 549-623(2020).

    [50] S. K. Srivastava et al. Antireflective ultra-fast nanoscale texturing for efficient multi-crystalline silicon solar cells. Solar Energy, 115, 656-666(2015). https://doi.org/10.1016/j.solener.2015.03.010

    [51] S. Sarkar et al. Black silicon revisited as an ultrabroadband perfect infrared absorber over 20  μm wavelength range. Adv. Photonics Res., 4, 2200223(2023). https://doi.org/10.1002/adpr.202200223

    [52] C. H. Crouch et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl. Phys. A Mater. Sci. Process., 79, 1635-1641(2004). https://doi.org/10.1007/s00339-004-2676-0

    [53] C. Wu et al. Near-unity below-band-gap absorption by microstructured silicon. Appl. Phys. Lett., 78, 1850-1852(2001). https://doi.org/10.1063/1.1358846

    [54] Y. Liu et al. Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon. Laser Phys., 18, 1148-1152(2008). https://doi.org/10.1134/S1054660X08100071

    [55] P. G. Maloney et al. Emissivity of microstructured silicon. Appl. Opt., 49, 1065-1068(2010). https://doi.org/10.1364/AO.49.001065

    [56] S. Ma et al. A theoretical study on the optical properties of black silicon. AIP Adv., 8, 035010(2018).

    [57] G. Sanchez-Plaza, A. Urquia. Process and optical modeling of black silicon. Opt. Express, 32, 17704-17718(2024). https://doi.org/10.1364/OE.516245

    [58] Y. Zhang et al. Plasma focused ion beam tomography for accurate characterization of black silicon validated by full wave optical simulation. Adv. Mater. Technol., 7, 2200068(2022).

    [59] X. Zhang et al. Effects of black silicon surface morphology induced by a femtosecond laser on absorptance and photoelectric response efficiency. Photonics, 11, 947(2024).

    [60] D. A. R. Barkhouse et al. Yield predictions for photovoltaic power plants: empirical validation, recent advances and remaining uncertainties. Prog. Photovolt. Res. Appl., 20, 6-11(2015). https://doi.org/10.1002/pip.1160

    [61] R. Memming, G. Schwandt. Anodic dissolution of silicon in hydrofluoric acid solutions. Surf. Sci., 4, 109-124(1966). https://doi.org/10.1016/0039-6028(66)90071-9

    [62] S. Surdo, G. Barillaro. Voltage- and metal-assisted chemical etching of micro and nano structures in silicon: a comprehensive review. Small, 20, 2400499(2024).

    [63] L. Sainiemi et al. Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis. Nanotechnology, 18, 505303(2007). https://doi.org/10.1088/0957-4484/18/50/505303

    [64] X. G. Zhang, S. D. Collins, R. L. Smith. Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution. J. Electrochem. Soc., 136, 1561(1989). https://doi.org/10.1149/1.2096961

    [65] P. Kleimann, J. Linnros, R. Juhasz. Formation of three-dimensional microstructures by electrochemical etching of silicon. Appl. Phys. Lett., 79, 1727-1729(2001). https://doi.org/10.1063/1.1401792

    [66] S. Matthias et al. Large-area three-dimensional structuring by electrochemical etching and lithography. Adv. Mater., 16, 2166-2170(2004). https://doi.org/10.1002/adma.200400436

    [67] P. Kleimann, X. Badel, J. Linnros. Toward the formation of three-dimensional nanostructures by electrochemical etching of silicon. Appl. Phys. Lett., 86, 183108(2005). https://doi.org/10.1063/1.1924883

    [68] X. G. Zhang. Morphology and formation mechanisms of porous silicon. J. Electrochem. Soc., 151, C69(2004). https://doi.org/10.1149/1.1632477

    [69] H. A. D. Ali, Y. M. Hassan. Metal assisted stain etched porous silicon for detecting Klebsiella bacteria. Eur. J. Sci. Eng., 9, 353-362(2023).

    [70] R. Bilyalov, L. Stalmans, J. Poortmans. Comparative analysis of chemically and electrochemically formed porous Si antireflection coating for solar cells. J. Electrochem. Soc., 150, G216(2003). https://doi.org/10.1149/1.1545468

    [71] J. V. Pleština et al. Nanoporous silicon tubes: the role of geometry in nanostructure formation and application to light emitting diodes. J. Phys. D Appl. Phys., 50, 265101(2017).

    [72] R. R. Bilyalov et al. Multicrystalline silicon solar cells with porous silicon emitter. Solar Energy Mater. Solar Cells, 60, 391-420(2000). https://doi.org/10.1016/S0927-0248(99)00102-6

    [73] M. Y. Arafat et al. Fabrication of black silicon via metal-assisted chemical etching—a review. Sustainability, 13, 10766(2021). https://doi.org/10.3390/su131910766

    [74] Z. Huang et al. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett., 8, 3046-3051(2008). https://doi.org/10.1021/nl802324y

    [75] Z. Zuo et al. Gold-thickness-dependent Schottky barrier height for charge transfer in metal-assisted chemical etching of silicon. Nanoscale Res. Lett., 8, 193(2013). https://doi.org/10.1186/1556-276X-8-193

    [76] J. Kim et al. Curved silicon nanowires with ribbon-like cross sections by metal-assisted chemical etching. ACS Nano, 5, 5242-5248(2011). https://doi.org/10.1021/nn2014358

    [77] R. Akan et al. Reaction control of metal-assisted chemical etching for silicon-based zone plate nanostructures. RSC Adv., 8, 12628-12634(2018). https://doi.org/10.1039/C8RA01627E

    [78] S. Li et al. Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl. Surf. Sci., 369, 232-240(2016). https://doi.org/10.1016/j.apsusc.2016.02.028

    [79] X. Li et al. High-efficiency multi-crystalline black silicon solar cells achieved by additive assisted Ag-MACE. Solar Energy, 195, 176-184(2020). https://doi.org/10.1016/j.solener.2019.11.045

    [80] L. Yang et al. 18.87%-efficient inverted pyramid structured silicon solar cell by one-step Cu-assisted texturization technique. Solar Energy Mater. Solar Cells, 166, 121-126(2017). https://doi.org/10.1016/j.solmat.2017.03.017

    [81] Y. Cao et al. Progress and mechanism of cu assisted chemical etching of silicon in a low Cu2+ concentration region. ECS J. Solid State Sci. Technol., 4, P331-P336(2015). https://doi.org/10.1149/2.0191508jss

    [82] J. P. Lee, S. Choi, S. Park. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir, 27, 809-814(2011). https://doi.org/10.1021/la1045354

    [83] L. Kong, S. Y. Chiam, W. K. Chim. Metal-assisted silicon chemical etching using self-assembled sacrificial nickel nanoparticles template for antireflection layers in photovoltaic and light-trapping devices. ACS Appl. Nano Mater., 2, 7025-7031(2019). https://doi.org/10.1021/acsanm.9b01528

    [84] K. Gao et al. Fabrication of black silicon by Ni assisted chemical etching. Mater. Res. Express, 5, 015020(2018).

    [85] R. A. Lai et al. Schottky barrier catalysis mechanism in metal-assisted chemical etching of silicon. ACS Appl. Mater. Interfaces, 8, 8875-8879(2016). https://doi.org/10.1021/acsami.6b01020

    [86] Y. Wang et al. Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles. Nanoscale, 9, 907-914(2017). https://doi.org/10.1039/C6NR08126F

    [87] Z. Huang, H. Fang, J. Zhu. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater., 19, 744-748(2007). https://doi.org/10.1002/adma.200600892

    [88] C. Huo et al. Metal-assisted chemical etching of silicon in oxidizing HF solutions: origin, mechanism, development, and black silicon solar cell application. Adv. Funct. Mater., 30, 2005744(2020).

    [89] Y. Matsui, S. Adachi. Optical properties of black silicon formed by catalytic etching of Au/Si(100) wafers. J. Appl. Phys., 113, 173502(2013).

    [90] A. Mateen et al. Silicon nanowires via metal-assisted chemical etching for energy storage applications. ChemSusChem, 18, 202400777(2024). https://doi.org/10.1002/cssc.202400777

    [91] D. P. Linklater, S. Juodkazis, E. P. Ivanova. Nanofabrication of mechano-bactericidal surfaces. Nanoscale, 9, 16564-16585(2017). https://doi.org/10.1039/C7NR05881K

    [92] S. Schaefer, R. Lüdemann. Low damage reactive ion etching for photovoltaic applications. J. Vac. Sci. Technol. A Vac. Surf. Films, 17, 749-754(1999). https://doi.org/10.1116/1.581644

    [93] Y. F. Huang et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol., 2, 770-774(2007). https://doi.org/10.1038/nnano.2007.389

    [94] J. I. Gittleman et al. Textured silicon: a selective absorber for solar thermal conversion. Appl. Phys. Lett., 35, 742-744(1979). https://doi.org/10.1063/1.90953

    [95] H. Jansen et al. The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng., 5, 115-120(1995). https://doi.org/10.1088/0960-1317/5/2/015

    [96] J. Yin, M. Hong. Seed-guided high-repetition-rate femtosecond laser oxidation for functional three-dimensional silicon structure fabrication. Opt. Laser Technol., 179, 111348(2024). https://doi.org/10.1016/j.optlastec.2024.111348

    [97] Y. Li, M. Hong. Parallel laser micro/nano-processing for functional device fabrication. Laser Photonics Rev., 14, 1900062(2020).

    [98] A. Y. Vorobyev, C. Guo. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev., 7, 385-407(2013). https://doi.org/10.1002/lpor.201200017

    [99] X. Y. Yu et al. The optical and electrical properties of co-doped black silicon textured by a femtosecond laser and its application to infrared light sensing. IEEE Sens. J., 16, 5227-5231(2016). https://doi.org/10.1109/JSEN.2016.2564500

    [100] T. H. Her et al. Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett., 73, 1673-1675(1998). https://doi.org/10.1063/1.122241

    [101] A. Y. Vorobyev, C. Guo. Direct creation of black silicon using femtosecond laser pulses. Appl. Surf. Sci., 257, 7291-7294(2011). https://doi.org/10.1016/j.apsusc.2011.03.106

    [102] M. Huang et al. The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass. Opt. Express, 18, A600-A619(2010). https://doi.org/10.1364/OE.18.00A600

    [103] M. Y. Shen et al. Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl. Phys. Lett., 85, 5694-5696(2004). https://doi.org/10.1063/1.1828575

    [104] R. Le Harzic et al. Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Opt. Express, 13, 6651-6656(2005). https://doi.org/10.1364/OPEX.13.006651

    [105] L. Stalmans et al. Porous silicon in crystalline silicon solar cells: a review and the effect on the internal quantum efficiency. Prog. Photovolt. Res. Appl., 6, 233-246(1998). https://doi.org/10.1002/(SICI)1099-159X(199807/08)6:4<233::AID-PIP207>3.0.CO;2-D

    [106] H. Zhang et al. A continuous, single-face wet texturing process for industrial multicrystalline silicon solar cells using a surfactant treated photoresist mask. Solar Energy Mater. Solar Cells, 180, 173-183(2018). https://doi.org/10.1016/j.solmat.2018.03.003

    [107] K. Peng et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater., 16, 387-394(2006). https://doi.org/10.1002/adfm.200500392

    [108] C. Zhang et al. Fabrication of 20.19% efficient single-crystalline silicon solar cell with inverted pyramid microstructure. Nanoscale Res. Lett., 13, 4-11(2018). https://doi.org/10.1186/s11671-017-2414-0

    [109] A. Abdulkadir, A. bin Abdul Aziz, M. Z. Pakhuruddin. Optimization of etching time for broadband absorption enhancement in black silicon fabricated by one-step electroless silver-assisted wet chemical etching. Optik, 187, 74-80(2019). https://doi.org/10.1016/j.ijleo.2019.05.019

    [110] K. Peng et al. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small, 1, 1062-1067(2005). https://doi.org/10.1002/smll.200500137

    [111] K. Q. Peng et al. High-performance silicon nanohole solar cells. J. Am. Chem. Soc., 132, 6872-6873(2010). https://doi.org/10.1021/ja910082y

    [112] J. Ji et al. Fabrication and photoelectrochemical properties of ordered Si nanohole arrays. Appl. Surf. Sci., 292, 86-92(2014). https://doi.org/10.1016/j.apsusc.2013.11.080

    [113] X. Yang et al. Influence of bowl-like nanostructures on the efficiency and module power of black silicon solar cells. Solar Energy, 189, 67-73(2019). https://doi.org/10.1016/j.solener.2019.07.044

    [114] K. M. Park, M. B. Lee, S. Y. Choi. Investigation of surface features for 17.2% efficiency multi-crystalline silicon solar cells. Solar Energy Mater. Solar Cells, 132, 356-362(2015). https://doi.org/10.1016/j.solmat.2014.07.023

    [115] Y. Xia et al. X-ray photoelectron spectroscopic studies of black silicon for solar cell. J. Electron. Spectrosc. Relat. Phenom., 184, 589-592(2012). https://doi.org/10.1016/j.elspec.2011.10.004

    [116] V. V. Iyengar, B. K. Nayak, M. C. Gupta. Optical properties of silicon light trapping structures for photovoltaics. Solar Energy Mater. Solar Cells, 94, 2251-2257(2010). https://doi.org/10.1016/j.solmat.2010.07.020

    [117] B. K. Nayak, V. V. Iyengar, M. C. Gupta. Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures. Prog. Photovolt.: Res. Appl., 19, 631-639(2011). https://doi.org/10.1002/pip.1067

    [118] M. E. Becquerel. Mémoire sur les effets électriques produits sous l’influence des rayons solaires. C. R. Hebd. Seances Acad. Sci., 9, 561-567(1839).

    [119] A. Y. Liu, S. P. Phang, D. Macdonald. Gettering in silicon photovoltaics: a review. Solar Energy Mater. Solar Cells, 234, 111447(2022). https://doi.org/10.1016/j.solmat.2021.111447

    [120] W. Cui et al. Status and perspectives of transparent conductive oxide films for silicon heterojunction solar cells. Mater. Today Nano, 22, 100329(2023). https://doi.org/10.1016/j.mtnano.2023.100329

    [121] M. Hermle et al. Passivating contacts and tandem concepts: approaches for the highest silicon-based solar cell efficiencies. Appl. Phys. Rev., 7, 021305(2020). https://doi.org/10.1063/1.5139202

    [122] F. Fertig et al. Mass production of p-type Cz silicon solar cells approaching average stable conversion efficiencies of 22%. Energy Procedia, 124, 338-345(2017). https://doi.org/10.1016/j.egypro.2017.09.308

    [123] J. Zhou et al. Passivating contacts for high-efficiency silicon-based solar cells: from single-junction to tandem architecture. Nano Energy, 92, 106712(2022). https://doi.org/10.1016/j.nanoen.2021.106712

    [124] Y. Cheng, L. Ding. Perovskite/Si tandem solar cells: fundamentals, advances, challenges, and novel applications. SusMat, 1, 324-344(2021). https://doi.org/10.1002/sus2.25

    [125] Y. Zhang et al. Progress in passivating selective contacts for heterojunction silicon solar cells. Nano Energy, 131, 110282(2024). https://doi.org/10.1016/j.nanoen.2024.110282

    [126] A. R. Barron. Cost reduction in the solar industry. Mater. Today, 18, 2-3(2015). https://doi.org/10.1016/j.mattod.2014.10.022

    [127] J. Oh, H. C. Yuan, H. M. Branz. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol., 7, 743-748(2012). https://doi.org/10.1038/nnano.2012.166

    [128] R. S. Davidsen et al. Black silicon laser-doped selective emitter solar cell with 18.1% efficiency. Solar Energy Mater. Solar Cells, 144, 740-747(2016). https://doi.org/10.1016/j.solmat.2015.10.018

    [129] W. C. Wang et al. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. ACS Appl. Mater. Interfaces, 5, 9752-9759(2013). https://doi.org/10.1021/am402889k

    [130] W. C. Wang et al. Efficiency enhancement of nanotextured black silicon solar cells using Al2O3/TiO2 dual-layer passivation stack prepared by atomic layer deposition. ACS Appl. Mater. Interfaces, 7, 10228-10237(2015). https://doi.org/10.1021/acsami.5b00677

    [131] H. Savin et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat. Nanotechnol., 10, 624-628(2015). https://doi.org/10.1038/nnano.2015.89

    [132] J. Xu et al. High efficiency TOPCon solar cells with micron/nano-structured emitter for a balance of light-trapping and surface passivation. Solar Energy Mater. Solar Cells, 238, 111606(2022). https://doi.org/10.1016/j.solmat.2022.111606

    [133] Y. Jiang et al. High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure. Solar Energy, 142, 91-96(2017). https://doi.org/10.1016/j.solener.2016.12.007

    [134] X. Ye et al. 18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture. Adv. Funct. Mater., 24, 6708-6716(2014). https://doi.org/10.1002/adfm.201401589

    [135] Z. Yue et al. Large-scale black multi-crystalline silicon solar cell with conversion efficiency over 18%. Appl. Phys. A Mater. Sci. Process., 116, 683-688(2014). https://doi.org/10.1007/s00339-014-8414-3

    [136] J. S. Chiu et al. The role of laser ablated backside contact pattern in efficiency improvement of mono crystalline silicon PERC solar cells. Solar Energy, 196, 462-467(2020). https://doi.org/10.1016/j.solener.2019.12.044

    [137] K. Gao et al. High-efficiency silicon inverted pyramid-based passivated emitter and rear cells. Nanoscale Res. Lett., 15, 174(2020).

    [138] S. Maus et al. SMART cast-monocrystalline p-type silicon passivated emitter and rear cells: efficiency benchmark and bulk lifetime analysis. Solar RRL, 5, 2000752(2021). https://doi.org/10.1002/solr.202000752

    [139] C. Modanese et al. Economic advantages of dry-etched black silicon in passivated emitter rear cell (PERC) photovoltaic manufacturing. Energies, 11, 2337(2018). https://doi.org/10.3390/en11092337

    [140] Z. G. Huang et al. Large-area MACE Si nano-inverted-pyramids for PERC solar cell application. Solar Energy, 188, 300-304(2019). https://doi.org/10.1016/j.solener.2019.06.015

    [141] J. Xu et al. High-efficiency black silicon tunnel oxide passivating contact solar cells through modifying the nano-texture on micron-pyramid surface. Solar Energy Mater. Solar Cells, 233, 111409(2021). https://doi.org/10.1016/j.solmat.2021.111409

    [142] C. Liu et al. High-efficiency black silicon tunnel oxide passivated contact solar cells achieved by adjusting the boron diffusion process. J. Mater. Sci. Mater. Electron., 32, 23465-23471(2021).

    [143] J. Zheng et al. Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells. Nat. Energy, 8, 1250-1261(2023). https://doi.org/10.1038/s41560-023-01382-w

    [144] X. Li et al. Surface reconstruction for efficient and stable monolithic perovskite/silicon tandem solar cells with greatly suppressed residual strain. Adv. Mater., 35, 2211962(2023).

    [145] X. Guo et al. Oblique-angle damage-free evaporation of silicon oxide electron-selective passivation contacts for efficient and stable perovskite and perovskite/TOPCon tandem solar cells. Adv. Energy Mater., 15, 2403021(2024). https://doi.org/10.1002/aenm.202403021

    [146] G. Nogay et al. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Lett., 4, 844-845(2019). https://doi.org/10.1021/acsenergylett.9b00377

    [147] Z. Ying et al. Bathocuproine: Ag complex functionalized tunneling junction for efficient monolithic perovskite/TOPCon silicon tandem solar cell. Solar RRL, 6, 2200793(2022). https://doi.org/10.1002/solr.202200793

    [148] P. Repo et al. Effective passivation of black silicon surfaces by atomic layer deposition. IEEE J. Photovolt., 3, 90-94(2012). https://doi.org/10.1109/JPHOTOV.2012.2210031

    [149] S. Wang et al. An artificial-intelligence-assisted investigation on the potential of black silicon nanotextures for silicon solar cells. ACS Appl. Nano Mater., 5, 11636-11647(2022). https://doi.org/10.1021/acsanm.2c02619

    [150] B. Meinel et al. Comparison of diamond wire cut and silicon carbide slurry processed silicon wafer surfaces after acidic texturisation. Mater. Sci. Semicond. Process., 26, 93-100(2014). https://doi.org/10.1016/j.mssp.2014.03.046

    [151] T. P. Pasanen et al. Impact of black silicon on light- and elevated temperature-induced degradation in industrial passivated emitter and rear cells. Prog. Photovolt. Res. Appl., 27, 918-925(2019). https://doi.org/10.1002/pip.3088

    [152] M. R. Shaner et al. Photoelectrochemistry of core–shell tandem junction n-p+-Si/n-WO3 microwire array photoelectrodes. Energy Environ. Sci., 7, 779-790(2014). https://doi.org/10.1039/C3EE43048K

    [153] S. W. Boettcher et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc., 133, 1216-1219(2011). https://doi.org/10.1021/ja108801m

    [154] Y. Yu et al. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy, 2, 17045(2017). https://doi.org/10.1038/nenergy.2017.45

    [155] C. Duan et al. Efficient visible light photocatalyst fabricated by depositing plasmonic Ag nanoparticles on conductive polymer-protected Si nanowire arrays for photoelectrochemical hydrogen generation. ACS Appl. Mater. Interfaces, 6, 9742-9750(2014). https://doi.org/10.1021/am5021414

    [156] Y. Yang et al. Evident enhancement of photoelectrochemical hydrogen production by electroless deposition of M-B (M = Ni, Co) catalysts on silicon nanowire arrays. ACS Appl. Mater. Interfaces, 8, 30143-30151(2016). https://doi.org/10.1021/acsami.6b09600

    [157] D. W. Kim et al. Black Si photocathode with a conformal and amorphous MoSx catalytic layer grown using atomic layer deposition for photoelectrochemical hydrogen evolution. ACS Appl. Mater. Interfaces, 14, 14137-14145(2022). https://doi.org/10.1021/acsami.1c22273

    [158] L. Qiao et al. Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy, 43, 22235-22242(2018). https://doi.org/10.1016/j.ijhydene.2018.10.090

    [159] S. Li et al. Photoelectrochemical hydrogen production of TiO2 passivated Pt/Si-nanowire composite photocathode. ACS Appl. Mater. Interfaces, 7, 18560-18565(2015). https://doi.org/10.1021/acsami.5b04936

    [160] S. Zhang et al. Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting. Nanotechnology, 29, 035601(2018).

    [161] Z. Xiong et al. Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting. Nanotechnology, 24, 265402(2013). https://doi.org/10.1088/0957-4484/24/26/265402

    [162] A. Kargar et al. Nanowire/nanotube array tandem cells for overall solar neutral water splitting. Nano Energy, 19, 289-296(2016). https://doi.org/10.1016/j.nanoen.2015.11.019

    [163] A. Kargar et al. P-Si/SnO2/Fe2O3 core/shell/shell nanowire photocathodes for neutral ph water splitting. Adv. Funct. Mater., 25, 2609-2615(2015). https://doi.org/10.1002/adfm.201404571

    [164] X. Wang et al. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Lett., 14, 18-23(2014). https://doi.org/10.1021/nl402205f

    [165] M. T. Mayer, C. Du, D. Wang. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J. Am. Chem. Soc., 134, 12406-12409(2012). https://doi.org/10.1021/ja3051734

    [166] K. Sun et al. Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. Nano Lett., 13, 2064-2072(2013). https://doi.org/10.1021/nl400343a

    [167] Y. Zhang et al. Fabrication and photoelectrochemical properties of silicon nanowires/g-C3N4 core/shell arrays. Appl. Surf. Sci., 396, 609-615(2017).

    [168] X. Wang et al. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Angew. Chem., 123, 10035-10039(2011). https://doi.org/10.1002/ange.201104102

    [169] X. Wang et al. Single crystalline ordered silicon wire/Pt nanoparticle hybrids for solar energy harvesting. Electrochem. Commun., 12, 509-512(2010). https://doi.org/10.1016/j.elecom.2010.01.027

    [170] W. Cai et al. Enhanced photoelectrochemical properties of copper-assisted catalyzed etching black silicon by electrodepositing cobalt. Appl. Phys. Lett., 111, 203902(2017).

    [171] B. Wang et al. MoSx quantum dot-modified black silicon for highly efficient photoelectrochemical hydrogen evolution. ACS Sustain. Chem. Eng., 7, 17598-17605(2019). https://doi.org/10.1021/acssuschemeng.9b03248

    [172] Y. Hou et al. Efficient photoelectrochemical hydrogen production over p-Si nanowire arrays coupled with molybdenum–sulfur clusters. Int. J. Hydrogen Energy, 42, 2832-2838(2017). https://doi.org/10.1016/j.ijhydene.2016.09.106

    [173] G. L. Zang et al. A bio-photoelectrochemical cell with a MoS3-modified silicon nanowire photocathode for hydrogen and electricity production. Energy Environ. Sci., 7, 3033-3039(2014). https://doi.org/10.1039/C4EE00654B

    [174] Z. Huang et al. Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3. Nano Energy, 2, 1337-1346(2013). https://doi.org/10.1016/j.nanoen.2013.06.016

    [175] Y. Hou et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater., 10, 434-438(2011). https://doi.org/10.1038/nmat3008

    [176] C. J. Chen et al. Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sulfide for water photoelectrolysis. Nano Energy, 32, 422-432(2017). https://doi.org/10.1016/j.nanoen.2016.12.045

    [177] M. Ali et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun., 7, 11335(2016). https://doi.org/10.1038/ncomms11335

    [178] J. Kim et al. A red-light-powered silicon nanowire biophotochemical diode for simultaneous CO2 reduction and glycerol valorization. Nat. Catal., 7, 977-986(2024). https://doi.org/10.1038/s41929-024-01198-1

    [179] C. Sun et al. Photoelectrocatalysis synthesis of ammonia based on a Ni-doped MoS2/Si nanowires photocathode and porous water with high N2 solubility. ACS Appl. Mater Interfaces, 15, 23085-23092(2023). https://doi.org/10.1021/acsami.3c01304

    [180] P. Cheng, D. Wang, P. Schaaf. A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications. Adv. Sustain. Syst., 6, 2200115(2022). https://doi.org/10.1002/adsu.202200115

    [181] Z. Wang et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. Int. Ed., 59, 8016-8035(2020). https://doi.org/10.1002/anie.201907443

    [182] F. Yu et al. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv. Sci., 7, 2000204(2020). https://doi.org/10.1002/advs.202000204

    [183] L. B. Hoch et al. Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels. ACS Nano, 10, 9017-9025(2016). https://doi.org/10.1021/acsnano.6b05416

    [184] P. G. O’Brien et al. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci., 1, 1400001(2014). https://doi.org/10.1002/advs.201400001

    [185] P. Cheng et al. Photo-thermoelectric conversion using black silicon with enhanced light trapping performance far beyond the band edge absorption. ACS Appl. Mater. Interfaces, 13, 1818-1826(2021). https://doi.org/10.1021/acsami.0c17279

    [186] Z. Song et al. Synergistic solar-driven freshwater generation and electricity output empowered by wafer-scale nanostructured silicon. Small, 19, 2205265(2023). https://doi.org/10.1002/smll.202205265

    [187] J. Y. H. Chai, B. T. Wong, S. Juodkazis. A theoretical study on the efficiencies of black silicon photovoltaic cells in thermophotovoltaic applications, 23-33(2022).

    [188] J. Y. H. Chai, B. T. Wong, J. Sunarso. An opto-electro-thermal model for black-silicon assisted photovoltaic cells in thermophotovoltaic applications. Photonics, 10, 565(2023). https://doi.org/10.3390/photonics10050565

    [189] J. Y. H. Chai. Study of black-silicon thermophotovoltaics for waste-heat-to-electricity harnessing via novel fundamental modeling(2023).

    [190] A. A. Khairul Azri et al. Development of surface-texturized black silicon through metal-assisted chemical etching and its application in the thermophotovoltaic field: a review and recommendation. Semicond. Sci. Technol., 013001, 013001(2024). https://doi.org/10.1088/1361-6641/ad9175

    [191] A. I. Hochbaum et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 451, 163-167(2008). https://doi.org/10.1038/nature06381

    [192] J. Chi et al. Harvesting water-evaporation-induced electricity based on liquid–solid triboelectric nanogenerator. Adv. Sci., 9, 2201586(2022).

    [193] W. Xu et al. A droplet-based electricity generator with high instantaneous power density. Nature, 578, 392-396(2020). https://doi.org/10.1038/s41586-020-1985-6

    [194] G. Xue et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol., 12, 317-321(2017). https://doi.org/10.1038/nnano.2016.300

    [195] Z. Zhang et al. Emerging hydrovoltaic technology. Nat. Nanotechnol., 13, 1109-1119(2018). https://doi.org/10.1038/s41565-018-0228-6

    [196] Y. Qin et al. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angew. Chem., 132, 10706-10712(2020). https://doi.org/10.1002/ange.202002762

    [197] H. Wang et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nat. Nanotechnol., 16, 811-819(2021). https://doi.org/10.1038/s41565-021-00903-6

    [198] X. Nan et al. In situ photoelectric biosensing based on ultranarrowband near-infrared plasmonic hot electron photodetection. Adv. Photonics, 6, 026007(2024). https://doi.org/10.1117/1.AP.6.2.026007

    [199] J. H. Zhao et al. Ultrafast laser-induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices. Mater. Today Nano, 11, 100078(2020). https://doi.org/10.1016/j.mtnano.2020.100078

    [200] S. Sarkar et al. Wideband mid infrared absorber using surface doped black silicon. Appl. Phys. Lett., 121, 231703(2022). https://doi.org/10.1063/5.0117289

    [201] Y. Song et al. A plasmon-enhanced broadband absorber fabricated by black silicon with self-assembled gold nanoparticles. J. Mater. Sci. Mater. Electron., 31, 4696-4701(2020).

    [202] M. A. Juntunen et al. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction. Nat. Photonics, 10, 777-781(2016). https://doi.org/10.1038/nphoton.2016.226

    [203] Y. Zhang, J. Y. Y. Loh, N. P. Kherani. Facilely achieved self-biased black silicon heterojunction photodiode with broadband quantum efficiency approaching 100%. Adv. Sci., 9, 2203234(2022). https://doi.org/10.1002/advs.202203234

    [204] M. Viehrig et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk. Anal. Chem., 92, 4317-4325(2020). https://doi.org/10.1021/acs.analchem.9b05060

    [205] X. Liu et al. Tissue imprinting on 2D nanoflakes-capped silicon nanowires for lipidomic mass spectrometry imaging and cancer diagnosis. ACS Nano, 16, 6916-6928(2022). https://doi.org/10.1021/acsnano.2c02616

    [206] M. Garin et al. Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%. Phys. Rev. Lett., 125, 117702(2020). https://doi.org/10.1103/PhysRevLett.125.117702

    [207] T. Tsang et al. Quantum efficiency of black silicon photodiodes at VUV wavelengths. Opt. Express, 28, 13299-13309(2020). https://doi.org/10.1364/OE.385448

    [208] J. Yin et al. Formation of armored silicon nanowires array via high-repetition-rate femtosecond laser oxidation for robust surface-enhanced Raman scattering detection. ACS Appl. Mater. Interfaces, 16, 48667-48675(2024). https://doi.org/10.1021/acsami.4c11308

    [209] J. Yang et al. In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules. Nat. Commun., 15, 5132(2024). https://doi.org/10.1038/s41467-024-48630-5

    [210] X. L. Liu et al. ‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives. ACS Appl. Mater. Interfaces, 10, 5061-5071(2018). https://doi.org/10.1021/acsami.7b16542

    [211] A. Y. Mironenko et al. Ultratrace nitroaromatic vapor detection via surface-enhanced fluorescence on carbazole-terminated black silicon. ACS Sens., 4, 2879-2884(2019). https://doi.org/10.1021/acssensors.9b01063

    [212] S. Zhao et al. Programmed death of injured Pseudomonas Aeruginosa on mechano-bactericidal surfaces. Nano Lett., 22, 1129-1137(2022). https://doi.org/10.1021/acs.nanolett.1c04243

    [213] J. Singh et al. Designing photocatalytic nanostructured antibacterial surfaces: why is black silica better than black silicon?. ACS Appl. Mater. Interfaces, 12, 20202-20213(2020). https://doi.org/10.1021/acsami.0c02854

    [214] D. P. Linklater et al. Mechano-bactericidal actions of nanostructured surfaces. Nat. Rev. Microbiol., 19, 8-22(2021). https://doi.org/10.1038/s41579-020-0414-z

    [215] E. P. Ivanova et al. Bactericidal activity of black silicon. Nat. Commun., 4, 2838(2013). https://doi.org/10.1038/ncomms3838

    [216] P. Gnanasekar et al. Highly efficient and stable photoelectrochemical hydrogen evolution with 2D-NbS2/Si nanowire heterojunction. ACS Appl. Mater. Interfaces, 11, 44179-44185(2019). https://doi.org/10.1021/acsami.9b14713

    [217] A. Anctil et al. Status report on emerging photovoltaics. J. Photonics Energy, 13, 042301(2023). https://doi.org/10.1117/1.JPE.13.042301

    [218] T. Pasanen et al. Industrial applicability of antireflection-coating-free black silicon on PERC solar cells and modules, 552-556(2018).

    Huaping Jia, Fengjia Xie, Elyes Nefzaoui, Tarik Bourouina, Heng Jiang, Xuming Zhang, "Black silicon nanostructures for solar energy conversion and photonic applications: a review," Adv. Photon. 7, 034004 (2025)
    Download Citation