• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 11, 4021 (2022)
GUO Chen1、2, YANG Liqing1, WAN Rui1、2, GUAN Yongmao1、2, CHEN Chao1, and WANG Pengfei1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    GUO Chen, YANG Liqing, WAN Rui, GUAN Yongmao, CHEN Chao, WANG Pengfei. Research and Development Progress of Electromagnetic Shielding Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4021 Copy Citation Text show less
    References

    [5] TAN D C, JIANG C M, LI Q K, et al. Development and current situation of flexible and transparent EM shielding materials[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(21): 2560325630.

    [6] OSIPKOV A, MAKEEV M, GARSIYA E, et al. Radioshielding metamaterials transparent in the visible spectrum: approaches to creation[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1060(1): 012007.

    [9] ZHANG C, JI C G, PARK Y B, et al. Thinmetalfilmbased transparent conductors: material preparation, optical design, and device applications[J]. Advanced Optical Materials, 2021, 9(3): 2001298.

    [10] HAN Y, LIU Y X, HAN L, et al. Highperformance hierarchical graphene/metalmesh film for optically transparent electromagnetic interference shielding[J]. Carbon, 2017, 115: 3442.

    [11] RAY B, PARMAR S, DATE K, et al. Optically transparent polymer composites: a study on the influence of filler/dopant on electromagnetic interference shielding mechanism[J]. Journal of Applied Polymer Science, 2021, 138(16): 50255.

    [12] WANG H Y, JI C G, ZHANG C, et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 1178211791.

    [13] ERDOGAN N, ERDEN F, ASTARLIOGLU A T, et al. ITO/Au/ITO multilayer thin films on transparent polycarbonate with enhanced EMI shielding properties[J]. Current Applied Physics, 2020, 20(4): 489497.

    [14] PARK J S, LEE S S, PARK I K. Visible and IR transparent Codoped SnO2 thin films with efficient electromagnetic shielding performance[J]. Journal of Alloys and Compounds, 2020, 815: 152480.

    [15] FERNANDES G E, LEE D J, KIM J H, et al. Infrared and microwave shielding of transparent Aldoped ZnO superlattice grown via atomic layer deposition[J]. Journal of Materials Science, 2013, 48(6): 25362542.

    [16] YUAN C W, HUANG J H, DONG Y X, et al. Recordhigh transparent electromagnetic interference shielding achieved by simultaneous microwave FabryPérot interference and optical antireflection[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 2665926669.

    [17] WANG H Y, ZHANG Y L, JI C G, et al. Transparent perfect microwave absorber employing asymmetric resonance cavity[J]. Advanced Science, 2019, 6(19): 1901320.

    [18] LIANG Z C, ZHAO Z Y, PU M B, et al. Metallic nanomesh for highperformance transparent electromagnetic shielding[J]. Optical Materials Express, 2020, 10(3): 796806.

    [19] LU Z G, WANG H Y, TAN J B, et al. Microwave shielding enhancement of hightransparency, doublelayer, submillimeterperiod metallic mesh[J]. Applied Physics Letters, 2014, 105(24): 241904.

    [20] LU Z G, TAN J B. Analysis of transmitting characteristics of hightransparency doublelayer metallic meshes with submillimeter period using an analytical model[J]. Applied Optics, 2008, 47(29): 55195526.

    [21] ZHANG Y Q, DONG H X, LI Q S, et al. Doublelayer metal mesh etched by femtosecond laser for highperformance electromagnetic interference shielding window[J]. RSC Advances, 2019, 9(39): 2228222287.

    [22] HAN Y, ZHONG H, LIU N, et al. In situ surface oxidized copper mesh electrodes for highperformance transparent electrical heating and electromagnetic interference shielding[J]. Advanced Electronic Materials, 2018, 4(11): 1800156.

    [23] SHI K, SU J H, HU K, et al. Highperformance copper mesh for optically transparent electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(14): 1164611653.

    [25] TAN J B, LU Z G. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light[J]. Optics Express, 2007, 15(3): 790796.

    [26] LU Z G, WANG H Y, TAN J B, et al. Achieving an ultrauniform diffraction pattern of stray light with metallic meshes by using ring and subring arrays[J]. Optics Letters, 2016, 41(9): 19411944.

    [27] WANG H, LU Z, TAN J. Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated subring arrays[J]. Optics Express, 2016, 24(20): 2298923000.

    [28] LU Z G, LIU Y S, WANG H Y, et al. Optically transparent frequency selective surface based on nested ring metallic mesh[J]. Optics Express, 2016, 24(23): 2610926118.

    [29] WANG H Y, LU Z G, LIU Y S, et al. Doublelayer interlaced nested multiring array metallic mesh for highperformance transparent electromagnetic interference shielding[J]. Optics Letters, 2017, 42(8): 16201623.

    [30] WANG H Y, LU Z G, TAN J B, et al. Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding[J]. Thin Solid Films, 2018, 662: 7682.

    [31] WANG W Q, BAI B F, ZHOU Q, et al. Petalshaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction[J]. Optical Materials Express, 2018, 8(11): 3485.

    [32] XU X M, LIN Z X, WANG S H, et al. Analysis of the effect on shielding effectiveness of the rotation angle in multiring metallic meshes[J]. IEEE Microwave and Wireless Components Letters, 2020, 99: 14.

    [33] HAN Y, LIN J, LIU Y X, et al. Crackle template based metallic mesh with highly homogeneous light transmission for highperformance transparent EMI shielding[J]. Scientific Reports, 2016, 6: 25601.

    [34] WALIA S, SINGH A K, RAO V S G, et al. Metal meshbased transparent electrodes as highperformance EMI shields[J]. Bulletin of Materials Science, 2020, 43(1): 18.

    [35] VORONIN A S, FADEEV Y V, GOVORUN I V, et al. CuAg and NiAg meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance[J]. Journal of Materials Science, 2021, 56(26): 1474114762.

    [36] JIANG Z Y, ZHAO S Q, HUANG W B, et al. Embedded flexible and transparent doublelayer nickelmesh for high shielding efficiency[J]. Optics Express, 2020, 28(18): 2653126542.

    [37] JIANG Z Y, HUANG W B, CHEN L S, et al. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding[J]. Optics Express, 2019, 27(17): 2419424206.

    [38] KIM M H, JOH H, HONG S H, et al. Coupled Ag nanocrystalbased transparent mesh electrodes for transparent and flexible electromagnetic interference shielding films[J]. Current Applied Physics, 2019, 19(1): 813.

    [39] TRAN V V, NGUYEN D D, NGUYEN A T, et al. Electromagnetic interference shielding by transparent graphene/nickel mesh films[J]. ACS Applied Nano Materials, 2020, 3(8): 74747481.

    [40] MA L M, LU Z G, TAN J B, et al. Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 3422134229.

    [41] LU Z G, MA L M, TAN J B, et al. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing[J]. 2D Materials, 2017, 4(2): 025021.

    [42] PHAN D T, JUNG C W. Multilayered salt water with high optical transparency for EMI shielding applications[J]. Scientific Reports, 2020, 10: 21549.

    [43] PHAN D T, JUNG C W. Optically transparent and very thin structure against electromagnetic pulse (EMP) using metal mesh and saltwater for shielding windows[J]. Scientific Reports, 2021, 11: 2603.

    [44] ZHANG Y Q, DONG H X, MOU N L, et al. Highperformance broadband electromagnetic interference shielding optical window based on a metamaterial absorber[J]. Optics Express, 2020, 28(18): 2683626849.

    [45] ZHOU Q, YIN X W, YE F, et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure[J]. Applied Physics A, 2019, 125(2): 18.

    [46] WANG Z X, JIAO B, QING Y C, et al. Flexible and transparent ferroferric oxidemodified silver nanowire film for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 28262834.

    [47] ZHANG N, WANG Z, SONG R G, et al. Flexible and transparent graphene/silvernanowires composite film for high electromagnetic interference shielding effectiveness[J]. Science Bulletin, 2019, 64(8): 540546.

    [48] ZHOU B, SU M J, YANG D Z, et al. Flexible MXene/silver nanowirebased transparent conductive film with electromagnetic interference shielding and electrophotothermal performance[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 4085940869.

    [49] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXenesilver nanowire films with smart acoustic sensitivity for highperformance electromagnetic interference shielding[J]. ACS Nano, 2020: 2020 Jun 1.

    [50] ZHU X Z, XU J, QIN F, et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires[J]. Nanoscale, 2020, 12(27): 1458914597.

    [51] GU J H, HU S W, JI H J, et al. Multilayer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding[J]. Nanotechnology, 2020, 31(18): 185303.

    [52] YANG Y, CHEN S, LI W L, et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding[J]. ACS Nano, 2020, 14(7): 87548765.

    [53] LIANG X W, ZHOU J W, LI G, et al. Insitu redox nanowelding of copper nanowires with surficial oxide layer as solder for flexible transparent electromagnetic interference shielding[C]//2019 IEEE 69th Electronic Components and Technology Conference. Las Vegas, NV, USA. IEEE, 2019: 746752.

    [54] HOSSEINI E, ARJMAND M, SUNDARARAJ U, et al. Fillerfree conducting polymers as a new class of transparent electromagnetic interference shields[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 2859628606.

    GUO Chen, YANG Liqing, WAN Rui, GUAN Yongmao, CHEN Chao, WANG Pengfei. Research and Development Progress of Electromagnetic Shielding Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4021
    Download Citation