• Frontiers of Optoelectronics
  • Vol. 10, Issue 4, 402 (2017)
Tao YUAN, Zhonghuan CAO, and Guoli TU*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: doi 10.1007/s12200-017-0713-9.1 Cite this Article
    Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Frontiers of Optoelectronics, 2017, 10(4): 402 Copy Citation Text show less
    References

    [1] Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6 (3): 153-161

    [2] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789- 1791

    [3] Mazzio K A, Luscombe C K. The future of organic photovoltaics. Chemical Society Reviews, 2015, 44(1): 78-90

    [4] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5: 5293

    [5] Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C, Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Advanced Materials, 2010, 22(20): E135-E138

    [6] Zhao W, Qian D, Zhang S, Li S, Ingan s O, Gao F, Hou J. Fullerenefree polymer solar cells with over 11% efficiency and excellent thermal stability. Advanced Materials, 2016, 28(23): 4734-4739

    [7] Lu L, Kelly M A, You W, Yu L. Status and prospects for ternary organic photovoltaics. Nature Photonics, 2015, 9(8): 491-500

    [8] Ouyang X H, Peng R X, Ai L, Zhang X Y, Ge Z Y. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nature Photonics, 2015, 9(8): 520-524

    [9] uang L, Chen L, Huang P, Wu F, Tan L, Xiao S, Zhong W, Sun L, Chen Y. Triple dipole effect from self-assembled small-molecules for high performance organic photovoltaics. Advanced Materials, 2016, 28(24): 4852-4860

    [10] Zhang Z G, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy & Environmental Science, 2014, 7(6): 1966-1973

    [11] He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced powerconversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 593-597

    [12] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Energylevel modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Advanced Materials, 2016, 28(42): 9423-9429

    [13] Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Advanced Materials, 2012, 24(6): 728-732

    [14] Kumar A, Zhou C. The race to replace tin-doped indium oxide: which material will win ACS Nano, 2010, 4(1): 11-14

    [15] Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K. Highly conductive PEDOT:PSS nanofibrils induced by solutionprocessed crystallization. Advanced Materials, 2014, 26(14): 2268- 2272

    [16] Wu Z, Chen Z, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G. Transparent, conductive carbon nanotube films. Science, 2004, 305(5688): 1273- 1276

    [17] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457 (7230): 706-710

    [18] Wu H, Kong D, Ruan Z, Hsu P C, Wang S, Yu Z, Carney T J, Hu L, Fan S, Cui Y. A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 2013, 8(6): 421-425

    [19] Garnett E C, Cai W, Cha J J, Mahmood F, Connor S T, Greyson Christoforo M, Cui Y, McGehee M D, Brongersma M L. Selflimited plasmonic welding of silver nanowire junctions. Nature Materials, 2012, 11(3): 241-249

    [20] Hu L,Wu H, Cui Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin, 2011, 36(10): 760-765

    [21] Kang H, Jung S, Jeong S, Kim G, Lee K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nature Communications, 2015, 6: 6503

    [22] Lenk S, Schwab T, Schubert S, Müller-Meskamp L, Leo K, Gather M C, Reineke S. White organic light-emitting diodes with 4 nm metal electrode. Applied Physics Letters, 2015, 107(16): 163302

    [23] Formica N, Ghosh D S, Carrilero A, Chen T L, Simpson R E, Pruneri V. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Applied Materials & Interfaces, 2013, 5(8): 3048-3053

    [24] Schwab T, Schubert S, Hofmann S, Fr bel M, Fuchs C, Thomschke M, Müller-Meskamp L, Leo K, Gather M C. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Advanced Optical Materials, 2013, 1(10): 707- 713

    [25] Qian L, Zheng Y, Choudhury K R, Bera D, So F, Xue J, Holloway P H. Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today, 2010, 5 (5): 384-389

    [26] Schubert S, Meiss J, Müller-Meskamp L, Leo K. Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Advanced Energy Materials, 2013, 3(4): 438-443

    Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Frontiers of Optoelectronics, 2017, 10(4): 402
    Download Citation