• Acta Photonica Sinica
  • Vol. 50, Issue 10, 1026001 (2021)
Kejian WANG1, Dacheng ZHANG1、*, Yunxiao YANG1, Xuyang LIU1, Xuan YU2, Jianting LEI2, Shaofeng ZHANG2, and Jiangfeng ZHU1
Author Affiliations
  • 1School of Physics and Optoeletronic Engineering,Xidian University,Xi'an 710071,China
  • 2Institute of Modern Physics,Chinese Academy of Science,Lanzhou 730000,China
  • show less
    DOI: 10.3788/gzxb20215010.1026001 Cite this Article
    Kejian WANG, Dacheng ZHANG, Yunxiao YANG, Xuyang LIU, Xuan YU, Jianting LEI, Shaofeng ZHANG, Jiangfeng ZHU. Study on Detection Method of Topological Charge of Femtosecond Vortex Beams[J]. Acta Photonica Sinica, 2021, 50(10): 1026001 Copy Citation Text show less
    References

    [1] L ALLEN, M W BEIJERSBERGEN, R J C SPREEUW et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185(1992).

    [2] O J ALLEGRE, Z LI, L LI. Tailored laser vector fields for high-precision micro-manufacturing. Cirp Annals, 68, 193-196(2019).

    [3] S SYUBAEV, A ZHIZHCHENKO, A KUCHMIZHAK et al. Direct laser printing of chiral plasmonic nanojets by vortex beams. Optics Express, 25, 10214-10223(2017).

    [4] Y KOZAWA, D MATSUNAGA, S SATO. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica, 5, 86-92(2018).

    [5] S WEI, T LEI, L DU et al. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting. Optics Express, 23, 30143-30148(2015).

    [6] T LEI, M ZHANG, Y LI et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Science & Applications, 4, e257-e257(2015).

    [7] Y REN, L LI, Z WANG et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications. Scientific Reports, 6, 1-10(2016).

    [8] M PADGETT, R BOWMAN. Tweezers with a twist. Nature photonics, 5, 343-348(2011).

    [9] Y ZHANG, W SHI, Z SHEN et al. A plasmonic spanner for metal particle manipulation. Scientific Reports, 5, 1-9(2015).

    [10] M PROTOPAPAS, C H KEITEL, P L KNIGHT. Atomic physics with super-high intensity lasers. Reports on Progress in Physics, 60, 389(1997).

    [11] Y FANG, M HAN, P GE et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nature Photonics, 15, 115-120(2021).

    [12] G MOLINA-TERRIZA, J P TORRES, L TORNER. Twisted photons. Nature Physics, 3, 305-310(2007).

    [13] A MAIR, A VAZIRI, G WEIHS et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [14] M W BEIJERSBERGEN, L ALLEN, DER VEEN HVAN et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 96, 123-132(1993).

    [15] A Y BEKSHAEV, M S SOSKIN, M V VASNETSOV. Transformation of higher-order optical vortices upon focusing by an astigmatic lens. Optics Communications, 241, 237-247(2004).

    [16] Y SHEN, X WANG, Z XIE et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science & Applications, 8, 1-29(2019).

    [17] J LEACH, M J PADGETT, S M BARNETT et al. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 88, 257901(2002).

    [18] H I SZTUL, R R ALFANO. Double-slit interference with Laguerre-Gaussian beams. Optics Letters, 31, 999-1001(2006).

    [19] J M HICKMANN, E J S FONSECA, W C SOARES et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physical Review Letters, 105, 053904(2010).

    [20] P H F MESQUITA, A J JESUS-SILVA, E J S FONSECA et al. Engineering a square truncated lattice with light's orbital angular momentum. Optics Express, 19, 20616-20621(2011).

    [21] R CHEN, X ZHANG, Y ZHOU et al. Detecting the topological charge of optical vortex beams using a sectorial screen. Applied Optics, 56, 4868-4872(2017).

    [22] Runquan LI, Zhi WANG, Can CUI et al. Diffraction of vortex beam by regular hexagonal multighole array. Acta Optica Sinica, 38, 1005002(2018).

    [23] K OU, G LI, T LI et al. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale, 10, 19154-19161(2018).

    [24] Y HE, J LIU, P WANG et al. Detecting orbital angular momentum modes of vortex beams using feed-forward neural network. Journal of Lightwave Technology, 37, 5848-5855(2019).

    [25] X LU, C ZHAO, Y SHAO et al. Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam. Applied Physics Letters, 114, 201106(2019).

    [26] X DING, G FENG, S ZHOU. Detection of phase distribution of vortex beams based on low frequency heterodyne interferometry with a common commercial CCD camera. Applied Physics Letters, 116, 031106(2020).

    [27] J C LI, H F ZHANG, D R ALEXANDER et al. Diffraction characteristics of 10 fs laser pulses passing through an aperture. Journal of the Optical Society of America A, 22, 1304-1310(2005).

    Kejian WANG, Dacheng ZHANG, Yunxiao YANG, Xuyang LIU, Xuan YU, Jianting LEI, Shaofeng ZHANG, Jiangfeng ZHU. Study on Detection Method of Topological Charge of Femtosecond Vortex Beams[J]. Acta Photonica Sinica, 2021, 50(10): 1026001
    Download Citation