[1] L.F. Fan, Y.X. Ji, G.X. Wang, J.X. Chen, K. Chen et al., High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144, 7224–7235 (2022).
[2] T.Z. Wang, X.J. Cao, L.F. Jiao, Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem. Int. Ed. 61, e202213328 (2022).
[3] G.X. Wang, J.X. Chen, P.W. Cai, J.C. Jia, Z.H. Wen, A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell. J. Mater. Chem. A 6, 17763–17770 (2018).
[4] X. Liu, Y. Han, Y. Guo, X.T. Zhao, D. Pan et al., Electrochemical hydrogen generation by oxygen evolution reaction-alternative anodic oxidation reactions. Adv. Energy Sustain. Res. 3, 2200005 (2022).
[5] J.S. Wang, X.Y. Guan, H.B. Li, S.Y. Zeng, R. Li et al., Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy 100, 107467 (2022).
[6] Y. Yu, S.J. Lee, J. Theerthagiri, Y. Lee, M.Y. Choi, Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl. Catal. B-Environ. 316, 121603 (2022).
[7] R.Q. Li, S.Y. Zeng, B. Sang, C.Z. Xue, K.G. Qu et al., Regulating electronic structure of porous nickel nitride nanosheet arrays by cerium doping for energy-saving hydrogen production coupling hydrazine oxidation. Nano Res. 16, 2543–2550 (2023).
[8] X.J. Zhai, Q.P. Yu, J.Q. Chi, X.P. Wang, B. Li et al., Accelerated dehydrogenation kinetics through Ru, Fe dual-doped Ni2P as bifunctional electrocatalyst for hydrazine-assisted self-powered hydrogen generation. Nano Energy 105, 108008 (2023).
[9] H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun, Z.Y. Yuan, Heteroatom-induced accelerated kinetics on nickel selenide for highly efficient hydrazine-assisted water splitting and Zn-hydrazine battery. Nano-Micro Lett. 15, 155 (2023).
[10] Q. Liu, X.B. Liao, Y.H. Tang, J.H. Wang, X.Z. Lv et al., Low-coordinated cobalt arrays for efficient hydrazine electrooxidation. Energy Environ. Sci. 15, 3246–3256 (2022).
[11] X.Y. Fu, D.F. Cheng, C.Z. Wan, S. Kumari, H.T. Zhang et al., Bifunctional ultrathin RhRu0.5 alloy nanowire electrocatalysts for hydrazine assisted water splitting. Adv. Mater. 35, e2301533 (2023).
[12] J. Zhang, Y.X. Wang, C.J. Yang, S.A. Chen, Z.J. Li et al., Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts. Nano Res. 14, 4650–4657 (2021).
[13] Y.P. Zhu, K. Fan, C.S. Hsu, G. Chen, C.S. Chen et al., Supported ruthenium single-atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution. Adv. Mater. (2023).
[14] K. Zhang, Y.X. Duan, N. Graham, W.Z. Yu, Unveiling the synergy of polymorph heterointerface and sulfur vacancy in NiS/Ni3S2 electrocatalyst to promote alkaline hydrogen evolution reaction. Appl. Catal. B-Environ. 323, 122144 (2023).
[15] J.Y. Wang, J.R. Feng, Y.Y. Li, F.L. Lai, G.C. Wang et al., Multilayered molybdate microflowers fabricated by one-pot reaction for efficient water splitting. Adv. Sci. 10, 122144 (2023).
[16] M. Zhou, X.L. Jiang, W.J. Kong, H.F. Li, F. Lu et al., Synergistic effect of dual-doped carbon on Mo2C nanocrystals facilitates alkaline hydrogen evolution. Nano-Micro Lett. 15, 166 (2023).
[17] X.H. Xu, T. Wang, W.B. Lu, L.J. Dong, H.S. Zhang et al., CoxP@Co3O4 nanocomposite on cobalt foam as efficient bifunctional electrocatalysts for hydrazine-assisted hydrogen production. ACS Sustain. Chem. Eng. 9, 4688–4701 (2021).
[18] K. Zhang, G. Zhang, Q.H. Ji, J.H. Qu, H.J. Liu, Arrayed cobalt phosphide electrocatalyst achieves low energy consumption and persistent H2 liberation from anodic chemical conversion. Nano-Micro Lett. 12, 154 (2020).
[19] H.Q. Song, M. Wu, Z.Y. Tang, J.S. Tse, B. Yang et al., Single atom ruthenium-doped CoP/CDs Nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60, 7234–7244 (2021).
[20] X.Y. Wang, W.H. Zhang, Q.P. Yu, X.B. Liu, Q.C. Liang et al., Fe-doped CoNiP@N-doped carbon nanosheet arrays for hydrazine oxidation assisting energy-saving seawater splitting. Chem. Eng. J. 446, 136987 (2022).
[21] H.R. Sun, L.Y. Gao, A. Kumar, Z.B. Cao, Z. Chang et al., Superaerophobic CoP nanowire arrays as a highly effective anode electrocatalyst for direct hydrazine fuel cells. ACS Appl. Energy Mater. 5, 9455–9462 (2022).
[22] J.M. Wang, R.M. Kong, A.M. Asiri, X.P. Sun, Replacing oxygen evolution with hydrazine oxidation at the anode for energy-saving electrolytic hydrogen production. ChemElectroChem 4, 481–484 (2017).
[23] T. Meng, J.W. Qin, D. Xu, M.H. Cao, Atomic heterointerface-induced local charge distribution and enhanced water adsorption behavior in a cobalt phosphide electrocatalyst for self-powered highly efficient overall water splitting. ACS Appl. Mater. Interfaces 11, 9023–9032 (2019).
[24] S. Geng, F.Y. Tian, M.G. Li, X. Guo, Y.S. Yu et al., Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A 9, 8561–8567 (2021).
[25] K. Xu, H. Cheng, H.F. Lv, J.Y. Wang, L.Q. Liu et al., Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 30, 1703322 (2018).
[26] J.X. Feng, H. Xu, Y.T. Dong, X.F. Lu, Y.X. Tong et al., Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. Int. Ed. 56, 2960–2964 (2017).
[27] Y.N. Zhou, W.H. Hu, Y.N. Zhen, B. Dong, Y.W. Dong et al., Metallic MoOx layer promoting high-valence Mo doping into CoP nanowires with ultrahigh activity for hydrogen evolution at 2000 mA/cm2. Appl. Catal. B-Environ. 309, 121230 (2022).
[28] W.H. Liu, H.M. Zhang, M.Y. Ma, D. Cao, D.J. Cheng, Constructing a highly active amorphous WO3/crystalline CoP interface for enhanced hydrogen evolution at different pH values. ACS Appl. Energy Mater. 5, 10794–10801 (2022).
[29] J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018).
[30] Y.N. Men, Y. Tan, P. Li, X.M. Cao, S.F. Jia et al., Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Appl. Catal. B-Environ. 284, 119718 (2021).
[31] G.Y. Zhou, M. Li, Y.L. Li, H. Dong, D.M. Sun et al., Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. Adv. Funct. Mater. 30, 1905252 (2020).
[32] K. Xu, Y.Q. Sun, Y.M. Sun, Y.Q. Zhang, G.C. Jia et al., Yin-yang harmony: metal and nonmetal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution. ACS Energy Lett. 3, 2750–2756 (2018).
[33] G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16), 11169–11186 (1996).
[34] PE. Blöchi. Projector augmented-wave method. Phys Rev B 50(24), 17953–17979 (1994).
[35] J. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett 77(18), 3865–3868 (1996).
[36] B. Hammer, L.B Hansen, J.K. Nørskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals Physical Review B 59(11) 7413-7421 (1999).
[37] L. Goerigk, S. Grimme. A thorough benchmark of density functional methods for general main group thermochemistry kinetics and noncovalent interactions Phys Chem Chem Phys 13(14), 6670 (2011).
[38] J. Neugebauer, M. Scheffler. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Review B 46(24), 16067–16080 (1992)
[39] A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phy 113(22), 9901–9904 (2000).
[40] Graeme, Henkelman Andri, Arnaldsson Hannes, Jónsson (2006) A fast and robust algorithm for Bader decomposition of charge density Computational Materials Science 36(3) 354–360.
[41] Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys Chem B 108(46), 17886–17892 (2004).
[42] R.G. Kadam, T. Zhang, D. Zaoralová, M. Medveď, A. Bakandritsos et al., Single Co-atoms as electrocatalysts for efficient hydrazine oxidation reaction. Small 17, 2006477 (2021).
[43] G.H. Liu, T.Q. Nie, H.J. Wang, T.Y. Shen, X.L. Sun et al., Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: from nanoparticles to nanoclusters and single atoms. ACS Catal. 12, 10711–10717 (2022).
[44] W.Y. Zhang, B.L. Huang, K. Wang, W.X. Yang, F. Lv et al., WOx-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. Adv. Energy Mater. 11, 2003192 (2021).
[45] D. Rathore, A. Banerjee, S. Pande, Bifunctional tungsten-doped Ni(OH)2/NiOOH nanosheets for overall water splitting in an alkaline medium. ACS Appl. Nano Mater. 5, 2664–2677 (2022).
[46] J.Q. Yan, L.Q. Kong, Y.J. Ji, J. White, Y.Y. Li et al., Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 10, 2149 (2019).
[47] S.W. Niu, Y.Y. Fang, D.W. Rao, G.J. Liang, S.Y. Li et al., Reversing the nucleophilicity of active sites in CoP2 enables exceptional hydrogen evolution catalysis. Small 18, 2106870 (2022).
[48] K. Xu, H. Ding, M.X. Zhang, M. Chen, Z.K. Hao et al., Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv. Mater. 29, 1606980 (2017).
[49] B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).
[50] J.C. Li, Y. Li, J.A. Wang, C. Zhang, H.J. Ma et al., Elucidating the critical role of ruthenium single atom sites in water dissociation and dehydrogenation behaviors for robust hydrazine oxidation-boosted alkaline hydrogen evolution. Adv. Funct. Mater. 32, 2109439 (2022).
[51] R.Z. Chen, J.F. Yao, Q.F. Gu, S. Smeets, C. Baerlocher et al., A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 49, 9500–9502 (2013).
[52] D.C. Yang, J.A. Hernandez, R.S. Katiyar, L.F. Fonseca, Surface morphology-controlled fabrication of Na2WO4 films with high structural stability. Chem. Phys. Lett. 653, 73–77 (2016).
[53] Y.K. Voron’ko, A.A. Sobol, Influence of cations on the vibrational spectra and structure of WO4 complexes in molten tungstates. Inorg. Mater. 41, 420–428 (2005).
[54] J. Wu, N.N. Han, S.C. Ning, T. Chen, C.Y. Zhu et al., Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 8, 14825–14832 (2020).
[55] C. Guan, W. Xiao, H.J. Wu, X.M. Liu, W.J. Zang et al., Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48, 73–80 (2018).
[56] Y.F. Huang, F.T. Kong, H. Tian, F.L. Pei, Y.F. Chen et al., Ultra-uniformly dispersed Cu nanoparticles embedded in N-doped carbon as a robust oxygen electrocatalyst. ACS Sustain. Chem. Eng. 10, 6370–6381 (2022).
[57] X.L. Ma, G.Q. Ning, Y.Z. Sun, Y.J. Pu, J.S. Gao, High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 79, 310–320 (2014).
[58] F. Xu, A. Fahmi, Y.M. Zhao, Y.D. Xia, Y.Q. Zhu, Patterned growth of tungsten oxide and tungsten oxynitride nanorods from Au-coated W foil. Nanoscale 4, 7031–7037 (2012).
[59] Y. Pan, K.A. Sun, Y. Lin, X. Cao, Y.S. Cheng et al., Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 56, 411–419 (2019).
[60] X. Feng, B.W. Liu, K.X. Guo, L.F. Fan, G.X. Wang et al., Anodic electrocatalysis of glycerol oxidation for hybrid alkali/acid electrolytic hydrogen generation. J. Electrochem. 29, 2215005 (2023).
[61] X.K. Huang, X.P. Xu, C. Li, D.F. Wu, D.J. Cheng et al., Vertical CoP nanoarray wrapped by N,P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions. Adv. Energy Mater. 9, 1803970 (2019).
[62] X. Wang, Z.J. Ma, L.L. Chai, L.Q. Xu, Z.Y. Zhu et al., MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon 141, 643–651 (2019).
[63] J. Yu, Q.Q. Li, Y. Li, C.Y. Xu, L. Zhen et al., Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26, 7644–7651 (2016).
[64] R.P. Li, H. Xu, P.X. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13, 120 (2021).
[65] Q. Li, Y.C. Wang, J. Zeng, Q.M. Wu, Q.C. Wang et al., Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. Chinese Chem. Lett. 32, 3355–3358 (2021).
[66] J. Yao, M.Y. Zhang, X.Z. Ma, L.L. Xu, F. Gao et al., Interfacial electronic modulation of CoP–CoO p–p type heterojunction for enhancing oxygen evolution reaction. J. Colloid Interface Sci. 607, 1343–1352 (2022).
[67] J.C. Liu, C.Y. Tang, Z.J. Ke, R. Chen, H.B. Wang et al., Optimizing hydrogen adsorption by d–d orbital modulation for efficient hydrogen evolution catalysis. Adv. Energy Mater. 12, 2103301 (2022).
[68] Y. Lin, Y. Pan, S.J. Liu, K.A. Sun, Y.S. Cheng et al., Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electrocatalytic water splitting. Appl. Catal. B-Environ. 259, 118039 (2019).
[69] Y. Yang, Y.M. Qian, H.J. Li, Z.H. Zhang, Y.W. Mu et al., O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).
[70] Y.Y. Gao, S. Qian, H.J. Wang, W.Z. Yuan, Y. Fan et al., Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution. Appl. Catal. B-Environ. 320, 122014 (2023).
[71] H.Y. Lu, W. Fan, Y.P. Huang, T.X. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Res. 11, 1274–1284 (2018).
[72] L.F. Fan, Y.X. Ji, G.X. Wang, Z.F. Zhang, L.C. Yi et al., Bifunctional Mn-doped CoSe2 nanonetworks electrode for hybrid alkali/acid electrolytic H2 generation and glycerol upgrading. J. Energy Chem. 72, 424–431 (2022).
[73] Z.L. Zheng, L. Yu, M. Gao, X.Y. Chen, W. Zhou et al., Boosting hydrogen evolution on MoS2via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 11, 3315 (2020).
[74] R. Chellappa, D. Dattelbaum, L. Daemen, Z.X. Liu, High pressure spectroscopic studies of hydrazine (N2H4). J. Phys. Conf. Ser. 500, 052008 (2014).
[75] W.C. Xu, G.L. Fan, J.L. Chen, J.H. Li, L. Zhang et al., Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59, 3511–3516 (2020).
[76] J.L. Zhang, Y.H. Tang, C.J. Song, J.J. Zhang, H.J. Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C. J. Power Sources 163, 532–537 (2006).
[77] K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi et al., A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 119, 8024–8027 (2007).