• Acta Photonica Sinica
  • Vol. 51, Issue 5, 0551306 (2022)
Yunkun WU1、2 and Xifeng REN1、2、*
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China
  • 2Synergetic Innovation Center of Quantum Information & Quantum Physics,University of Science and Technology of China,Hefei 230026,China
  • show less
    DOI: 10.3788/gzxb20225105.0551306 Cite this Article
    Yunkun WU, Xifeng REN. Applications of Silver Nanowires in Quantum Optics(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551306 Copy Citation Text show less
    References

    [1] E OZBAY. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189-193(2006).

    [2] J TAKAHARA, S YAMAGISHI, H TAKI et al. Guiding of a one-dimensional optical beam with nanometer diameter. Optics Letters, 22, 475-477(1997).

    [3] P BERINI, I DE LEON. Surface plasmon-polariton amplifiers and lasers. Nature Photonics, 6, 16-24(2012).

    [4] D J BERGMAN, M I STOCKMAN. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Physical Review Letters, 90, 027402(2003).

    [5] V GIANNINI, A I FERNÁNDEZ-DOMÍNGUEZ, S C HECK et al. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical Reviews, 111, 3888-3912(2011).

    [6] J N ANKER, W P HALL, O LYANDRES et al. Biosensing with plasmonic nanosensors. Nanoscience and Technology: A Collection of Reviews from Nature Journals, 308-319(2010).

    [7] J TAKAHARA. Plasmonic nanoguides and circuits, ch2-33-62(2009).

    [8] N FANG, H LEE, CHENG SUN et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [9] J M ELSON, R H RITCHIE. Photon interactions at a rough metal surface. Physical Review B, 4, 4129(1971).

    [10] J J HOPFIELD. Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review, 112, 1555(1958).

    [11] D PINES. A collective description of electron interactions: IV. Electron interaction in metals. Physical Review, 92, 626(1953).

    [12] D PINES, D BOHM. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Physical Review, 85, 338(1952).

    [13] M S TAME, C LEE, J LEE et al. Single-photon excitation of surface plasmon polaritons. Physical Review Letters, 101, 190504(2008).

    [14] E WAKS, D SRIDHARAN. Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Physical Review A, 82, 043845(2010).

    [15] Da XU, Xiao XIONG, Lin WU et al. Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics, 10, 703-756(2018).

    [16] Ming LI, Yang CHEN, Guangcan GUO et al. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, 66, 144202(2017).

    [17] T W EBBESEN, H J LEZEC, H F GHAEMI et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [18] X F REN, G P GUO, P ZHANG et al. Remote control of extraordinary transmission through subwavelength hole arrays. Europhysics Letters, 84, 30005(2008).

    [19] M A GARCÍA. Surface plasmons in metallic nanoparticles: fundamentals and applications. Journal of Physics D: Applied Physics, 44, 283001(2011).

    [20] S I BOZHEVOLNYI, V S VOLKOV, E DEVAUX et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508-511(2006).

    [21] M I STOCKMAN. Nanofocusing of optical energy in tapered plasmonic waveguides. Physical Review Letters, 93, 137404(2004).

    [22] P MUEHLSCHLEGEL, H J EISLER, O J F MARTIN et al. Resonant optical antennas. Science, 308, 1607-1609(2005).

    [23] V GIANNINI, A I FERNÁNDEZ-DOMÍNGUEZ, S C HECK et al. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical Reviews, 111, 3888-3912(2011).

    [24] M RYCENGA, C M COBLEY, Jie ZENG et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 111, 3669-3712(2011).

    [25] A R MADARIA, A KUMAR, F N ISHIKAWA et al. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 3, 564-573(2010).

    [26] L BARDET, D T PAPANASTASIOU, C CRIVELLO et al. Silver nanowire networks: ways to enhance their physical properties and stability. Nanomaterials, 11, 2785(2021).

    [27] Yunkun WU, Liu LU, Yang CHEN et al. Excitation and analyzation of different surface plasmon modes on a suspended Ag nanowire. Nanoscale, 11, 22475-22481(2019).

    [28] J A SCHULLER, E S BARNARD, Wenshan CAI et al. Plasmonics for extreme light concentration and manipulation. Nature Materials, 9, 193-204(2010).

    [29] Xiao XIONG, Changling ZOU, Xifeng REN et al. Silver nanowires for photonics applications. Laser & Photonics Reviews, 7, 901-919(2013).

    [31] J J HOPFIELD. Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review, 112, 1555(1958).

    [32] A W SANDERS, D A ROUTENBERG, B J WILEY et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Letters, 6, 1822-1826(2006).

    [33] T KANG, W CHOI, I YOON et al. Rainbow radiating single-crystal Ag nanowire nanoantenna. Nano Letters, 12, 2331-2336(2012).

    [34] G SCHIDER, J R KRENN, A HOHENAU et al. Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 68, 155427(2003).

    [35] J R KRENN, J C WEEBER. Surface plasmon polaritons in metal stripes and wires. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, 362, 739-756(2004).

    [36] H K TYAGI, H W LEE, P UEBEL et al. Plasmon resonances on gold nanowires directly drawn in a step-index fiber. Optics Letters, 35, 2573-2575(2010).

    [37] Yugang SUN, Yadang YIN, B T MAYERS et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chemistry of Materials, 14, 4736-4745(2002).

    [38] Yugang SUN, B GATES, B MAYERS et al. Crystalline silver nanowires by soft solution processing. Nano Letters, 2, 165-168(2002).

    [39] H DITLBACHER, A HOHENAU, D WAGNER et al. Silver nanowires as surface plasmon resonators. Physical Review Letters, 95, 257403(2005).

    [40] J BARTHES, A BOUHELIER, A DEREUX et al. Coupling of a dipolar emitter into one-dimensional surface plasmon. Scientific Reports, 3, 1-8(2013).

    [41] Ruoxue YAN, J H PARK, Y CHOI et al. Nanowire-based single-cell endoscopy. Nature Nanotechnology, 7, 191-196(2012).

    [42] Fuxing GU, Heping ZENG, Liming TONG et al. Metal single-nanowire plasmonic sensors. Optics Letters, 38, 1826-1828(2013).

    [43] Ming LI, Changling ZOU, Xifeng REN et al. Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide. Nano Letters, 15, 2380-2384(2015).

    [44] E VERHAGEN, M SPASENOVIĆ, A POLMAN et al. Nanowire plasmon excitation by adiabatic mode transformation. Physical Review Letters, 102, 203904(2009).

    [45] Ning LIU, Zhipeng LI, Hongxing XU. Polarization-dependent study on propagating surface plasmons in silver nanowires launched by a near-field scanning optical fiber tip. Small, 8, 2641-2646(2012).

    [46] Zhipeng LI, Kui BAO, Yurui FANG et al. Effect of a proximal substrate on plasmon propagation in silver nanowires. physical review B, 82, 241402(2010).

    [47] Aiping LIU, Changling ZOU, Xifeng REN et al. Independently analyzing different surface plasmon polariton modes on silver nanowire. Optics Express, 22, 23372-23378(2014).

    [48] Changling ZOU, Fangwen SUN, Yunfeng XIAO et al. Plasmon modes of silver nanowire on a silica substrate. Applied Physics Letters, 97, 183102(2010).

    [49] Hong WEI, Deng PAN, Shunping ZHANG et al. Plasmon waveguiding in nanowires. Chemical Reviews, 118, 2882-2926(2018).

    [50] Shunping ZHANG, Hong WEI, Kui BAO et al. Chiral surface plasmon polaritons on metallic nanowires. Physical Review Letters, 107, 096801(2011).

    [51] Jiao LIN, J P B MUELLER, Qian WANG et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [52] Xiaobo YIN, Ziliang YE, J RHO et al. Photonic spin Hall effect at metasurfaces. Science, 339, 1405-1407(2013).

    [53] J PETERSEN, J VOLZ, A RAUSCHENBEUTEL. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 346, 67-71(2014).

    [54] N SHITRIT, I YULEVICH, E MAGUID et al. Spin-optical metamaterial route to spin-controlled photonics. Science, 340, 724-726(2013).

    [55] D PINES. A collective description of electron interactions: IV. Electron interaction in metals. Physical Review, 92, 626(1953).

    [56] J J HOPFIELD. Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review, 112, 1555(1958).

    [57] E ALTEWISCHER, EXTER M PVAN, J P WOERDMAN. Plasmon-assisted transmission of entangled photons. Nature, 418, 304-306(2002).

    [58] S FASEL, F ROBIN, E MORENO et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Physical Review Letters, 94, 110501(2005).

    [59] Xifeng REN, Guoping GUO, Yunfeng HUANG et al. Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state. Europhysics Letters, 76, 753(2006).

    [60] A HUCK, S SMOLKA, P LODAHL et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Physical Review Letters, 102, 246802(2009).

    [61] R KOLESOV, B GROTZ, G BALASUBRAMANIAN et al. Wave-particle duality of single surface plasmon polaritons. Nature Physics, 5, 470-474(2009).

    [62] G FUJII, T SEGAWA, S MORI et al. Preservation of photon indistinguishability after transmission through surface-plasmon-polariton waveguide. Optics Letters, 37, 1535-1537(2012).

    [63] R W HEERES, L P KOUWENHOVEN, V ZWILLER. Quantum interference in plasmonic circuits. Nature Nanotechnology, 8, 719-722(2013).

    [64] J S FAKONAS, H LEE, Y A KELAITA et al. Two-plasmon quantum interference. Nature Photonics, 8, 317-320(2014).

    [65] Yongjin CAI, Ming LI, Xifeng REN et al. High-visibility on-chip quantum interference of single surface plasmons. Physical Review Applied, 2, 014004(2014).

    [66] G DI MARTINO, Y SONNEFRAUD, S KÉNA-COHEN et al. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Letters, 12, 2504-2508(2012).

    [67] G FUJII, T SEGAWA, S MORI et al. Preservation of photon indistinguishability after transmission through surface-plasmon-polariton waveguide. Optics Letters, 37, 1535-1537(2012).

    [68] B VEST, M C DHEUR, É DEVAUX et al. Anti-coalescence of bosons on a lossy beam splitter. Science, 356, 1373-1376(2017).

    [69] Ming LI, Changling ZOU, Guangcan GUO et al. Effect of unbalanced and common losses in quantum photonic integrated circuits. Chinese Optics Letters, 15, 092701(2017).

    [70] Mengtao SUN, Zhenglong ZHANG, Peijie WANG et al. Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light: Science & Applications, 2, e112(2013).

    [71] K J RUSSELL, E L HU. Gap-mode plasmonic nanocavity. Applied Physics Letters, 97, 163115(2010).

    [72] Yaohui ZHAN, Xiaofeng LI, Kai WU et al. Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection. Applied Physics Letters, 106, 081109(2015).

    [73] D H JEONG, Youxiang ZHANG, M MOSKOVITS. Polarized surface enhanced Raman scattering from aligned silver nanowire rafts. The Journal of Physical Chemistry B, 108, 12724-12728(2004).

    [74] E M PURCELL. Spontaneous emission probabilities at radio frequencies. Physical Review, 69, 681(1946).

    [75] K H DREXHAGE. Influence of a dielectric interface on fluorescence decay time. Journal of luminescence, 1, 693-701(1970).

    [76] R SPRIK, TIGGELEN B AVAN, A LAGENDIJK. Optical emission in periodic dielectrics. Europhysics Letters, 35, 265(1996).

    [77] L NOVOTNY, B HECHT. Principles of nano-optics(2012).

    [78] C T TAI. Dyadic green functions in electromagnetic theory(1994).

    [79] D E CHANG, A S SØRENSEN, P R HEMMER et al. Quantum optics with surface plasmons. Physical Review Letters, 97, 053002(2006).

    [80] K H DREXHAGE, H KUHN, F P SCHÄFER. Variation of the fluorescence decay time of a molecule in front of a mirror. Berichte der Bunsengesellschaft für physikalische Chemie, 72, 329-329(1968).

    [81] E M PURCELL, H C TORREY, R V POUND. Resonance absorption by nuclear magnetic moments in a solid. Physical Review, 69, 37(1946).

    [82] A V AKIMOV, A MUKHERJEE, C YU et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450, 402-406(2007).

    [83] Tao CAI, S DUTTA, S AGHAEIMEIBODI et al. Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Letters, 17, 6564-6568(2017).

    [84] S KUMAR, S K H ANDERSEN, S I BOZHEVOLNYI. Extremely confined gap-plasmon waveguide modes excited by nitrogen-vacancy centers in diamonds. ACS Photonics, 6, 23-29(2018).

    [85] Guorui ZHANG, Ying GU, Qihuang GONG et al. Symmetry-tailored patterns and polarizations of single-photon emission. Nanophotonics, 9, 3557-3565(2020).

    [86] T T TRAN, Jinghua FANG, Hao ZHANG et al. Facile self‐assembly of quantum plasmonic circuit components. Advanced Materials, 27, 4048-4053(2015).

    [87] Yunkun WU, Xiaojing LIU, Xiaozhuo QI et al. Near-field modulation of single photon emitter with a plasmonic probe. Applied Physics Letters, 118, 104002(2021).

    [88] Xiaojing LIU, Yunkun WU, Xiaozhuo QI et al. Near-field modulation of differently oriented single photon emitters with a plasmonic probe. Nano Letters, 22, 2244-2250(2022).

    [89] A RIDOLFO, O DI STEFANO, N FINA et al. Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. Physical Review Letters, 105, 263601(2010).

    [90] V YANNOPAPAS, E PASPALAKIS, N V VITANOV. Plasmon-induced enhancement of quantum interference near metallic nanostructures. Physical Review Letters, 103, 063602(2009).

    [91] D BOUCHET, E LHUILLIER, S ITHURRIA et al. Correlated blinking of fluorescent emitters mediated by single plasmons. Physical Review A, 95, 033828(2017).

    [92] Wanli YANG, Junhong AN, Chengjie ZHANG et al. Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide. Scientific Reports, 5, 1-9(2015).

    [93] Qiang LI, Deng PAN, Hong WEI et al. Plasmon-assisted selective and super-resolving excitation of individual quantum emitters on a metal nanowire. Nano Letters, 18, 2009-2015(2018).

    [94] C SCHÖRNER, M LIPPITZ. Single molecule nonlinearity in a plasmonic waveguide. Nano Letters, 20, 2152-2156(2020).

    [95] E WAKS, D SRIDHARAN. Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Physical Review A, 82, 043845(2010).

    [96] P TÖRMÄ, W L BARNES. Strong coupling between surface plasmon polaritons and emitters: a review. Reports on Progress in Physics, 78, 013901(2014).

    [97] P VASA, C LIENAU. Strong light-matter interaction in quantum emitter/metal hybrid nanostructures. Acs Photonics, 5, 2-23(2018).

    [98] T U TUMKUR, G ZHU, M A NOGINOV. Strong coupling of surface plasmon polaritons and ensembles of dye molecules. Optics Express, 24, 3921-3928(2016).

    [99] A TRÜGLER, U HOHENESTER. Strong coupling between a metallic nanoparticle and a single molecule. Physical Review B, 77, 115403(2008).

    [100] R CHIKKARADDY, B DE NIJS, F BENZ et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [101] R LIU, Z K ZHOU, Y C YU et al. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Physical Review Letters, 118, 237401(2017).

    [102] G BEANE, B S BROWN, P JOHNS et al. Strong exciton-plasmon coupling in silver nanowire nanocavities. The Journal of Physical Chemistry Letters, 9, 1676-1681(2018).

    [103] G LAMRI, A VELTRI, J AUBARD et al. Polarization-dependent strong coupling between silver nanorods and photochromic molecules. Beilstein Journal of Nanotechnology, 9, 2657-2664(2018).

    [104] Chengping HUANG, Xiaogang YIN, Lingbao KONG et al. Interactions of nanorod particles in the strong coupling regime. The Journal of Physical Chemistry C, 114, 21123-21131(2010).

    [105] D MARTIN-CANO, A GONZÁLEZ-TUDELA, L MARTÍN-MORENO et al. Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Physical Review B, 84, 235306(2011).

    [106] J YANG, G W LIN, Y P NIU et al. Quantum entangling gates using the strong coupling between two optical emitters and nanowire surface plasmons. Optics Express, 21, 15618-15626(2013).

    [107] Shushu WANG, Danqing WANG, Xiaopeng HU et al. Compact surface plasmon amplifier in nonlinear hybrid waveguide. Chinese Physics B, 25, 077301(2016).

    [108] Lin LI, Tao LI, Xiaomei TANG et al. Plasmonic polarization generator in well-routed beaming. Light: Science & Applications, 4, e330-e330(2015).

    [109] Ji CHEN, Tao LI, Shuming WANG et al. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Letters, 17, 5051-5055(2017).

    [110] S M WANG, Q Q CHENG, Y X Gong et al. A 14×14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide. Nature Communications, 7, 1-5(2016).

    [111] Y FEDUTIK, V V TEMNOV, O SCHÖPS et al. Exciton-plasmon-photon conversion in plasmonic nanostructures. Physical Review Letters, 99, 136802(2007).

    [112] R KOLESOV, B GROTZ, G BALASUBRAMANIAN et al. Wave-particle duality of single surface plasmon polaritons. Nature Physics, 5, 470-474(2009).

    [113] T GAEBEL, M DOMHAN, I POPA et al. Room-temperature coherent coupling of single spins in diamond. Nature Physics, 2, 408-413(2006).

    [114] L CHILDRESS, M V G DUTT, J M TAYLOR et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science, 314, 281-285(2006).

    [115] Qiang LI, Hong WEI, Hongxing XU. Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire. Nano Letters, 15, 8181-8187(2015).

    [116] Guangyin CHEN, Y CHEN, D CHUU. Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire. Optics Letters, 33, 2212-2214(2008).

    [117] A V AKIMOV, A MUKHERJEE, C L YU et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450, 402-406(2007).

    [118] A HUCK, S KUMAR, A SHAKOOR et al. Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Physical Review Letters, 106, 096801(2011).

    [119] Qiang LI, Hong WEI, Hongxing XU. Resolving single plasmons generated by multiquantum-emitters on a silver nanowire. Nano Letters, 14, 3358-3363(2014).

    [120] A OTTO. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik a Hadrons and Nuclei, 216, 398-410(1968).

    [121] Xin GUO, Yaoguang MA, Yipei WANG et al. Nanowire plasmonic waveguides, circuits and devices. Laser & Photonics Reviews, 7, 855-881(2013).

    [122] Xin GUO, Min QIU, Jiming BAO et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters, 9, 4515-4519(2009).

    [123] Bigeng CHEN, Hao WU, Chenguang XIN et al. Flexible integration of free-standing nanowires into silicon photonics. Nature Communications, 8, 1-7(2017).

    [124] Chunhua DONG, Xifeng REN, Rui YANG et al. Coupling of light from an optical fiber taper into silver nanowires. Applied Physics Letters, 95, 221109(2009).

    [125] Xin GUO, Min QIU, Jiming BAO et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letter, 9, 12-4515-4519(2009).

    [126] R YAN, P PAUSAUSKIE, J HUANG et al. Direct photonic-plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences, 106, 21045-21050(2009).

    [127] G LU, H DE KEERSMAECKER, L SU et al. Live‐cell SERS endoscopy using plasmonic nanowire waveguides. Advanced Materials, 26, 5124-5128(2014).

    [128] S KIM, N YU, X MA et al. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nature Photonics, 13, 636-643(2019).

    [129] Yang CHEN, C LEE, Liu LU et al. Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing. Optica, 5, 1229-1235(2018).

    [130] Yurui FANG, Zhipeng LI, Yingzhou HUANG et al. Branched silver nanowires as controllable plasmon routers. Nano Letters, 10, 1950-1954(2010).

    [131] Zhipeng LI, Shunping ZHANG, N J HALAS et al. Coherent modulation of propagating plasmons in silver-nanowire-based structures. Small, 7, 593-596(2011).

    [132] Hong WEI, Zhipeng LI, Xiaorui TIAN et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Letters, 11, 471-475(2011).

    [133] Hong WEI, Zhuoxian WANG, Xiaorui TIAN et al. Cascaded logic gates in nanophotonic plasmon networks. Nature Communications, 2, 1-5(2011).

    [134] Xining ZHANG, Zhe MA, Rui LUO et al. Single-nanowire surface plasmon gratings. Nanotechnology, 23, 225202(2012).

    [135] C TANEJA, D PAUL, G V PAVAN KUMAR. Experimental observation of transverse spin of plasmon polaritons in a single crystalline silver nanowire. Applied Physics Letters, 119, 161108(2021).

    [136] Quanbing GUO, Tong FU, Jibo TANG et al. Routing a chiral Raman signal based on spin-orbit interaction of light. Physical Review Letters, 123, 183903(2019).

    [137] Haoran REN, Xiaoxia WANG, Chenhao LI et al. Orbital-angular-momentum-controlled hybrid nanowire circuit. Nano Letters, 21, 6220-6227(2021).

    [138] D K SHARMA, V KUMAR, A B VASISTA et al. Optical orbital angular momentum read-out using a self-assembled plasmonic nanowire. ACS Photonics, 6, 148-153(2018).

    [139] Yang LI, Meng KANG, Junjun SHI et al. Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires. Nano Letters, 17, 7803-7808(2017).

    [140] D E CHANG, A S SØRENSEN, E A DEMLER et al. A single-photon transistor using nanoscale surface plasmons. Nature Physics, 3, 807-812(2007).

    [141] Xiangdong CHEN, Enhui WANG, Longkun SHAN et al. Focusing the electromagnetic field to 10-6λ for ultra-high enhancement of field-matter interaction. Nature Communication, 12, 6389(2021).

    [142] A L FALK, F H L KOPPENS, L Y CHUN et al. Near-field electrical detection of optical plasmons and single plasmon sources(2010).

    [143] R W HEERES, L P KOUWENHOVEN, V ZWILLER. Quantum interference in plasmonic circuits. Nature Nanotechnology, 8, 719-722(2013).

    [144] R W HEERES, S N DORENBOS, B KOENE et al. On-chip single plasmon detection. Nano Letters, 10, 661-664(2010).

    [145] S NIE, S R EMORY. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [146] S CHANG, H KO, R GUNAWIDJAJA et al. Raman markers from silver nanowire crossbars. The Journal of Physical Chemistry C, 115, 4387-4394(2011).

    [147] S J LEE, J M BAIK, M MOSKOVITS. Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver nanowire. Nano Letters, 8, 3244-3247(2008).

    [148] Congcong BU, Lixuan MU, Xingxing CAO et al. Silver nanowire-based fluorescence thermometer for a single cell. ACS Applied Materials & Interfaces, 10, 33416-33422(2018).

    [149] Wenhui WANG, Qing YANG, Fengru FAN et al. Light propagation in curved silver nanowire plasmonic waveguides. Nano Letters, 11, 1603-1608(2011).

    [150] Xiangyong FU, Ying LU, Xiaohui HUANG et al. Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires. Optica Application, 41, 941-951(2011).

    [151] M T RAHMAN, M F KABIR, A GURUNG et al. Graphene oxide-silver nanowire nanocomposites for enhanced sensing of Hg2+. ACS Applied Nano Materials, 2, 4842-4851(2019).

    [152] N SAMANTARAY, I RUO-BERCHERA, A MEDA et al. Realization of the first sub-shot-noise wide field microscope. Light: Science & Applications, 6, e17005(2017).

    [153] G BRIDA, M GENOVESE, I R BERCHERA. Experimental realization of sub-shot-noise quantum imaging. Nature Photonics, 4, 227-230(2010).

    [154] J SABINES-CHESTERKING, R WHITTAKER, S K JOSHI et al. Sub-shot-noise transmission measurement enabled by active feed-forward of heralded single photons. Physical Review Applied, 8, 014016(2017).

    [155] M A TAYLOR, J JANOUSEK, V DARIA et al. Biological measurement beyond the quantum limit. Nature Photonics, 7, 229-233(2013).

    [156] P H S RIBEIRO, C SCHWOB, A MAÎTRE et al. Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twin beams. Optics Letters, 22, 1893-1895(1997).

    [157] A W SCHELL, P ENGEL, J F M WERRA et al. Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states. Nano Letters, 14, 2623-2627(2014).

    [158] C ROPP, Z CUMMINS, S NAH et al. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot. Nature Communications, 4, 1-8(2013).

    [159] P TAPSTER, S SEWARD, J RARITY. Sub-shot-noise measurement of modulated absorption using parametric down-conversion. Physical Review A, 44, 3266(1991).

    [160] R WHITTAKER, C ERVEN, A NEVILLE et al. Absorption spectroscopy at the ultimate quantum limit from single-photon states. New Journal of Physics, 19, 023013(2017).

    [161] T J CONSTANT, S M HORNETT, D E CHANG et al. All-optical generation of surface plasmons in graphene. Nature Physics, 12, 124-127(2016).

    [162] P BERINI, I DE LEON. Surface plasmon-polariton amplifiers and lasers. Nature Photonics, 6, 16-24(2012).

    [163] S A MOISEEV, A A KAMLI, B C SANDERS. Low-loss nonlinear polaritonics. Physical Review A, 81, 033839(2010).

    [164] M S TAME, K R MCENERY, Ş K ÖZDEMIR et al. Quantum plasmonics. Nature Physics, 9, 329-340(2013).

    [165] F VERSTRAETE, M M WOLF, J I CIRAC. Quantum computation and quantum-state engineering driven by dissipation. Nature Physics, 5, 633-636(2009).

    [166] Yadong YIN, Yu LU, Yugang SUN et al. Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Letters, 2, 427-430(2002).

    [167] M QUINTEN. Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV. Zeitschrift für Physik B Condensed Matter, 101, 211-217(1996).

    [168] Qiushi LIU, S KIM, Xuezhi MA et al. Ultra-sharp and surfactant-free silver nanowire for scanning tunneling microscopy and tip-enhanced Raman spectroscopy. Nanoscale, 11, 7790-7797(2019).

    Yunkun WU, Xifeng REN. Applications of Silver Nanowires in Quantum Optics(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551306
    Download Citation