[1] DAVIDOVITS J. Geopolymers: Inorganic polymeric new materials[J]. J Therm Anal Calorim, 1991, 37(8): 1633-1656.
[3] KOMNITSAS K, ZAHARAKI D. Geopolymerisation: A review and prospects for the minerals industry[J]. Miner Eng, 2007, 20(14): 1261-1277.
[5] MCLELLAN B C, WILLIAMS R P, LAY J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement[J]. J Clean Prod, 2011, 19(9): 1080-1090.
[6] DAVIDOVITS J. False values on CO2 emission for geopolymer cement/concrete published in scientific papers[J]. Technical Paper, 2015, 24: 1-9.
[7] HE P, WANG R, FU S, et al. Safe trapping of cesium into doping- enhanced pollucite structure by geopolymer precursor technique[J]. J Hazard Mater, 2019, 367: 577-588.
[8] WALKLEY B, KE X, HUSSEIN O H, et al. Incorporation of strontium and calcium in geopolymer gels[J]. J Hazard Mater, 2020, 382: 121015.
[9] SIYAL A A, SHAMSUDDIN M R, KHAN M I, et al. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes[J]. J Environ Manage, 2018, 224: 327-339
[11] SHARMA N, SODHI K K, KUMAR M, et al. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation[J]. Environ Nanotech, Monitor Manage, 2021, 15: 100388.
[12] AL-MASHQBEH A, ABUALI S, EL-ESWED B, et al. Immobilization of toxic inorganic anions (Cr2O2-7,MnO-4 and Fe(CN)3-6) in metakaolin based geopolymers: A preliminary study[J]. Ceram Int, 2018, 44(5): 5613-5620.
[13] JI Z, PEI Y. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO3-4 and Cr2O2-7) in wastes- based geopolymer[J]. J Hazard Mater, 2020, 384: 121290.
[14] TIAN Q, GUO B, SASAKI K. Immobilization mechanism of Se oxyanions in geopolymer: Effects of alkaline activators and calcined hydrotalcite additive[J]. J Hazard Mater, 2020, 387: 121994.
[15] TIAN Q, CHEN C, WANG M, et al. Effect of Si/Al molar ratio on the immobilization of selenium and arsenic oxyanions in geopolymer[J]. Environ Pollut, 2021, 274: 116509.
[16] KUSUMASTUTI E, ARIATI F I, ATMAJA L. Synthesis of volcanic ash-based geopolymer with calcium oxide (CaO) addition for building material application[J]. J Phys: Confer Ser, 2020, 1567: 022030.
[17] PULIGILLA S, MONDAL P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer[J]. Cem Concr Res, 2013, 43: 70-80.
[18] ABDEL-GAWWAD H A, ABD EL-ALEEM S. Effect of reactive magnesium oxide on properties of alkali activated slag geopolymer cement pastes[J]. CERAM-SILIKATY, 2015, 59(1): 37-47.
[19] LI Z H, ZHANG W, WANG R L, et al. Effects of reactive MgO on the reaction process of geopolymer[J]. Materials, 2019, DOI:10.3390/ ma 120360526.
[20] SINGH S, ASWATH M U, DAS BISWAS R, et al. Role of iron in the enhanced reactivity of pulverized Red mud: Analysis by Mssbauer spectroscopy and FTIR spectroscopy[J]. Case Stud Constr Mater, 2019, 11: e00266.
[21] CHEN J, WANG Y, ZHOU S, et al. Reduction/immobilization processes of hexavalent chromium using metakaolin-based geopolymer [J]. J Environ Chem Eng, 2017, 5(1): 373-380.
[22] ALREHAILY L, JOSEPH J, MUSA A, et al. Gamma-radiation induced formation of chromium oxide nanoparticles from dissolved dichromate[J]. PCCP, 2013, 15(1): 98-107.
[23] FERN NDEZ-GONZ LEZ A, ANDARA A, AL A J M, et al. Miscibility in the CaSO4·2H2O-CaSeO4·2H2O system: Implications for the crystallisation and dehydration behaviour[J]. Chem Geol, 2006, 225(3): 256-265.
[24] DEL ARCO M, CARRIAZO D, MART N C, et al. Characterization of chromate-intercalated layered double hydroxides[C]. proceedings of the Mater Sci Forum, Trans Tech Publ. Ltd, 2006, 514: 1541-1545.
[25] TIAN Q, GUO B, CHUAICHAM C, et al. Mechanism analysis of selenium (VI) immobilization using alkaline-earth metal oxides and ferrous salt[J]. Chemosphere, 2020, 248: 126123.