• Advanced Photonics Nexus
  • Vol. 3, Issue 1, 016002 (2024)
Keitaro Shimada1, Ayumu Ishijima2、†, Takao Saiki2, Ichiro Sakuma1、2、3, Yuki Inada1、4, and Keiichi Nakagawa1、2、*
Author Affiliations
  • 1The University of Tokyo, Department of Bioengineering, Tokyo, Japan
  • 2The University of Tokyo, Department of Precision Engineering, Tokyo, Japan
  • 3The University of Tokyo, Medical Device Development and Regulation Research Center, Tokyo, Japan
  • 4Saitama University, Department of Electronics and Information Sciences, Saitama, Japan
  • show less
    DOI: 10.1117/1.APN.3.1.016002 Cite this Article Set citation alerts
    Keitaro Shimada, Ayumu Ishijima, Takao Saiki, Ichiro Sakuma, Yuki Inada, Keiichi Nakagawa, "Spectrum shuttle for producing spatially shapable GHz burst pulses," Adv. Photon. Nexus 3, 016002 (2024) Copy Citation Text show less
    References

    [1] M. Barberoglou et al. The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation. Appl. Phys. A, 113, 273-283(2013).

    [2] C. Kerse et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537, 84-88(2016).

    [3] K. Mishchik et al. High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source. Opt. Lett., 44, 2193-2196(2019).

    [4] M. Spellauge et al. Influence of stress confinement, particle shielding and re-deposition on the ultrashort pulse laser ablation of metals revealed by ultrafast time-resolved experiments. Appl. Surf. Sci., 545, 148930(2021).

    [5] Y. Zhang et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photonics Res., 9, 839-847(2021).

    [6] K. Nakagawa et al. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics, 8, 695-700(2014).

    [7] A. Ehn et al. FRAME: femtosecond videography for atomic and molecular dynamics. Light Sci. Appl., 6, e17045(2017).

    [8] C. Guanghua et al. All-optical coaxial framing photography using parallel coherence shutters. Opt. Lett., 42, 415-418(2017).

    [9] S. Yeola, D. Kuk, K.-Y. Kim. Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses. J. Opt. Soc. Am. B, 35, 2822-2827(2018).

    [10] J. Liang, L. V. Wang. Single-shot ultrafast optical imaging. Optica, 5, 1113-1127(2018).

    [11] C. Klieber et al. Narrow-band acoustic attenuation measurements in vitreous silica at frequencies between 20 and 400 GHz. Appl. Phys. Lett., 98, 211908(2011).

    [12] A. M. Weiner. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum., 71, 1929-1960(2000).

    [13] T. Feurer et al. Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix. Opt. Lett., 27, 652-654(2002).

    [14] L. Jiang et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl., 7, 17134(2018).

    [15] P. S. Salter, M. J. Booth. Adaptive optics in laser processing. Light Sci. Appl., 8, 110(2019).

    [16] S. Chu et al. Optimizing two-photon fluorescence of Coumarin dye by combined temporal-spatial pulse shaping. Opt. Commun., 284, 4070-4072(2011).

    [17] T. Feurer et al. Spatiotemporal coherent control of lattice vibrational waves. Science, 299, 374-377(2003).

    [18] M. A. Muriel, J. Azaña, A. Carballar. Real-time Fourier transformer based on fiber gratings. Opt. Lett., 24, 1-3(1999).

    [19] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [20] Y. Jiang, S. Karpf, B. Jalali. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020).

    [21] R. Liao et al. Chromo-modal dispersion for optical communication and time-stretch spectroscopy. Opt. Lett., 46, 500-503(2021).

    [22] J. -L. Wu et al. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci. Appl., 6, e16196(2017).

    [23] H. Nemoto, T. Suzuki, F. Kannari. Extension of time window into nanoseconds in single-shot ultrafast burst imaging by spectrally sweeping pulses. Appl. Opt., 59, 5210-5215(2020).

    [24] T. Saiki et al. Spectrum circuit for producing spectrally separated nanosecond pulse train in free space, SM1H.5(2020).

    [25] A. Honda et al. Development of sub-Gfps ultrafast snapshot imaging system based on recirculation filtering of ultrashort optical pulses, STh4L.7(2022).

    [26] M. Touil et al. Acousto-optically driven lensless single-shot ultrafast optical imaging. Light Sci. Appl., 11, 66(2022).

    [27] K. Shimada et al. Single-shot transmission spectroscopic imaging by two-color stretched pulses. Rev. Laser Eng., 49, 240-244(2021).

    [28] T. Suzuki et al. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Opt. Express, 23, 30512-30522(2015).

    [29] A. Wang et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses. Adv. Mater., 27, 6238-6243(2015).

    [30] O. Martinez. 3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.31.6  μm region. IEEE J. Quantum Electron., 23, 59-64(1987). https://doi.org/10.1109/JQE.1987.1073201

    Keitaro Shimada, Ayumu Ishijima, Takao Saiki, Ichiro Sakuma, Yuki Inada, Keiichi Nakagawa, "Spectrum shuttle for producing spatially shapable GHz burst pulses," Adv. Photon. Nexus 3, 016002 (2024)
    Download Citation