[1] WOOD O, KOAY C S, PETRILLO K, et al.. EUV lithography at the 22 nm technology node[J]. SPIE, 2010, 7636: 76361M.
[2] ZHAN P P, LIU W G. Progress of EUVL technology[J]. Science & Technology Information, 2011(21): 44, 418. (in Chinese)
[3] WU B Q. Next-generation lithography for 22 and 16 nm technology nodes and beyond[J]. Science China Information Sciences, 2011, 54(5): 959-979.
[4] WANG L H, WANG X K, CHEN B. Study for dual-function EUV multilayer mirror [J]. Optics & Laser Technology, 2008, 40(3): 571-574.
[6] WANG X, JIN CH SH, LI CH, et al.. Preparation and characteristic of oxide capping-layer on extreme ultraviolet reflective mirrors [J]. Acta Optica Sinica, 2015, 35(3): 0331001. (in Chinese)
[8] GONG X P, LU Q P, LU G Q. Establishment of theoretical model and experimental equipment for researching on carbon contamination of EUV multi-layer mirror [J]. SPIE, 2015, 9446: 94460W.
[9] STREIN E, ALLRED D. Eliminating carbon contamination on oxidized Si surfaces using a VUV excimer lamp [J]. Thin Solid Films, 2008, 517(3): 1011-1015.
[10] LIN B J. Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost [J]. Microelectronic Engineering, 2015, 143: 91-101.
[11] ZHU J T, HUANG Q SH, BAI L, et al.. Manufacture and measurement of Sic/Mg EUV multilayer mirrors in different base pressures [J]. Opt. Precision Eng., 2009, 17(12): 2946-2951. (in Chinese)
[12] WEI W, ZHANG B, HONG Y ZH, et al.. In-Situ cleaning of carbon-contaminated optical components in beam-line of synchrotron radiation light source [J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(6): 552-555. (in Chinese)
[14] WEI W, WANG Q P, WANG Y, et al.. Plasma cleaning of contaminated optical components of synchrotron radiation beam-line [J]. Chinese Journal of Vacuum Science and Technology, 2009, 29(6): 704-706. (in Chinese)
[15] XU X D, ZHOU H J, HONG Y L, et al.. Cleaning of contaminated optics devices by synchrotron radiation [J]. Vacuum Science and Technology (China), 2000, 20(2): 114-119. (in Chinese)
[17] LU G Q. Study on Surface Contamination of EUV Multilayer Optics [D]. Changchun: Graduate University of Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, 2014. (in Chinese)
[18] CHEN J Q, LOUIS E, WORMEESTER H, et al.. Carbon-induced extreme ultraviolet reflectance loss characterized using visible-light ellipsometry [J]. Measurement Science and Technology, 2011, 22(10): 105705.
[19] CHEN J Q, LEE C J, LOUIS E, et al.. Characterization of EUV induced carbon films using laser-generated surface acoustic waves [J]. Diamond and Related Materials, 2009, 18(5-8): 768-771.
[20] BOLLER K, HAELBICHR P, HOGREFE H, et al.. Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation [J]. Nuclear Instruments and Methods in Physics Research, 1983, 208(1-3): 273-279.
[21] ROSENBERGR A, MANCINI D C. Deposition of carbon on gold using synchrotron radiation [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 291(1-2): 101-106.
[22] KURTR, VAN BEEK M, CROMBEEN C, et al.. Radiation-induced carbon contamination of optics [J]. SPIE, 2002, 4688: 702-709.
[23] SHIRAISHIM, YAMAGUCHI T, YAMAZAKI A, et al.. A simple modeling of carbon contamination on EUV exposure tools based on contamination experiments with synchrotron source [J]. SPIE, 2011, 7969: 79690N.
[24] KYRIAKOU G, DAVIS D J, GRANT R B, et al.. Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography [J]. The Journal of Physical Chemistry C, 2007, 111(12): 4491-4494.
[25] HOLLENSHEADJ, KLEBANOFF L. Modeling radiation-induced carbon contamination of extreme ultraviolet optics [J]. Journal of Vacuum Science & Technology B, 2006, 24(1): 64-82.
[26] WANG X, JIN CH SH, KUANG SH Q, et al.. Simulation model of surface carbon deposition contamination under extreme ultraviolet radiation [J]. Acta Optica Sinica, 2014, 34(5): 531001. (in Chinese)
[28] OESTREICHS, KLEIN R, SCHOLZE F, et al.. Multilayer reflectance during exposure to EUV radiation [J]. SPIE, 2000, 4146: 64-71.
[29] KOSTERN, MERTENS B, JANSEN R, et al.. Molecular contamination mitigation in EUVL by environmental control [J]. Microelectronic Engineering, 2002, 61-62: 65-76.
[30] MALYKHIN E M, LOPAEV D V, RAKHIMOV A T, et al.. Plasma cleaning of multilayer mirrors in EUV lithography from amorphous carbon contaminations [J]. Moscow University Physics Bulletin, 2011, 66(2): 184-189.
[31] DOLGOV A, LOPAEV D, RACHIMOVA T, et al.. Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas [J]. Journal of Physics D: Applied Physics, 2014, 47(6): 065205.
[32] MORGAN C G, NAULLEAU P P, REKAWA S B, et al.. Removal of surface contamination from EUV mirrors using low-power downstream plasma cleaning [J]. SPIE, 2010, 7636: 76361Q.
[33] PELLEGRIN E, ICS I, REYES-HERRERA J, et al.. Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning [J]. Journal of Synchrotron Radiation, 2014, 21(2): 300-314.
[34] GONZLEZCUXART M, REYES-HERRERA J, ICS I, et al.. RF plasma cleaning of optical surfaces: a study of cleaning rates on different carbon allotropes as a function of RF powers and distances [J]. Applied Surface Science, 2015, 81(7): 533-536.
[35] HAMAMOTO K, TANAKA Y, WATANABE T, et al.. Cleaning of extreme ultraviolet lithography optics and masks using 13.5 nm and 172 nm radiation [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2005, 23(1): 247-251.
[36] TAKAGI N, ANAZAWA T, NISHIYAMA I, et al.. Evaluation of the contamination removal capability and multilayer degradation in various cleaning methods [J]. SPIE, 2010, 7823: 782327.
[37] GRAHAM S JR, STEINHAUS C A, CLIFT W M, et al.. Atomic hydrogen cleaning of EUV multilayer optics [J]. SPIE, 2003, 5037: 460-469.
[38] CHEN J Q, LOUIS E, HARMSEN R, et al.. In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers [J]. Applied Surface Science, 2011, 258(1): 7-12.
[39] NISHIYAMA Y, ANAZAWA T, OIZUMI H, et al.. Carbon contamination of EUV mask: film characterization, impact on lithographic performance, and cleaning [J]. SPIE, 2008, 6921: 692116.
[40] OIZUMI H, YAMANASHI H, NISHIYAMA I, et al.. Contamination removal from EUV multilayer using atomic hydrogen generated by heated catalyzer [J]. SPIE, 2005, 5751: 1147-1154.
[41] MOTAI K, OIZUMI H, MIYAGAKI S, et al.. Atomic hydrogen cleaning of Ru-capped EUV multilayer mirror [J]. SPIE, 2007, 6517: 65170F.
[42] MOTAI K, OIZUMI H, MIYAGAKI S, et al.. Cleaning technology for EUV multilayer mirror using atomic hydrogen generated with hot wire [J]. Thin Solid Films, 2008, 516(5): 839-843.