• Optics and Precision Engineering
  • Vol. 26, Issue 1, 132 (2018)
HUANG Ting*, XU Hui, FAN Cheng, SUN Li-ning, and CHEN Guo-dong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20182601.0132 Cite this Article
    HUANG Ting, XU Hui, FAN Cheng, SUN Li-ning, CHEN Guo-dong. Robotic grinding process planning for complex blade surfaces[J]. Optics and Precision Engineering, 2018, 26(1): 132 Copy Citation Text show less

    Abstract

    In order to realize intelligent grinding and machining of workpieces with complex surfaces, robotic grinding process planning for complex blade surfaces was performed.The position planning algorithm of the grind point and the posture planning algorithm based on the maximum contact principle were studied. First, the grind path was obtained through the secant transverse line cutting method and described by NURBS curve, and then the curve feature parameters were extracted and grinding position planning was performed according to the set threshold. Then, based on the maximum contact principle of the grinding wheel andworkpiece, the posture planning of the grind point was presented. After that, the complete grinding path was obtained.Then, the position and posture data were converted from workpiece coordinate system to TCP coordinate system. Finally, the simulation platform of flexible grinding system was constructed to generate robot control program. Experimental results indicate that the proposed path can be used for robotic grinding of blade complex surface. The blades are grinded by using the path obtained by proposed planning method and the path of CAM software planning, and the corresponding surface roughness is 0.695-0.930 μm and 2.803-3.243 μm respectively. Therefore, the proposed method can be applied to the grinding path planning of complex surface. It ensures that the tool and the workpiece are in maximum contact, and thereby avoids uneven grinding caused by the poor position and pose.
    HUANG Ting, XU Hui, FAN Cheng, SUN Li-ning, CHEN Guo-dong. Robotic grinding process planning for complex blade surfaces[J]. Optics and Precision Engineering, 2018, 26(1): 132
    Download Citation