• Nano-Micro Letters
  • Vol. 16, Issue 1, 143 (2024)
Jie Ma1、2、3, Siyang Xing2、3、5, Yabo Wang2, Jinhu Yang4, and Fei Yu1、*
Author Affiliations
  • 1College of Marine Ecology and Environment, Shanghai Ocean University, 201306 Shanghai, People’s Republic of China
  • 2School of Civil Engineering, Kashi University, 844000 Kashi, People’s Republic of China
  • 3Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092 Shanghai, People’s Republic of China
  • 4School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092 Shanghai, People’s Republic of China
  • 5Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
  • show less
    DOI: 10.1007/s40820-024-01371-y Cite this Article
    Jie Ma, Siyang Xing, Yabo Wang, Jinhu Yang, Fei Yu. Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination[J]. Nano-Micro Letters, 2024, 16(1): 143 Copy Citation Text show less
    References

    [1] M. Metzger, M.M. Besli, S. Kuppan, S. Hellstrom, S. Kim et al., Techno-economic analysis of capacitive and intercalative water deionization. Energy Environ. Sci. 13, 1544–1560 (2020).

    [2] P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020).

    [3] C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023).

    [4] X. Zhao, H. Wei, H. Zhao, Y. Wang, N. Tang, Electrode materials for capacitive deionization: a review. J. Electroanal. Chem. 873, 114416 (2020).

    [5] W. Tang, D. He, C. Zhang, P. Kovalsky, T.D. Waite, Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res. 120, 229–237 (2017).

    [6] J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7, 3683–3689 (2014).

    [7] S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).

    [8] Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14, 176 (2022).

    [9] Z. Liu, H. Li, Exploration of the exceptional capacitive deionization performance of CoMn2O4 microspheres electrode. Energy Environ. Mater. 6, 12255 (2023).

    [10] S. Wang, G. Wang, T. Wu, C. Li, Y. Wang et al., Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal. Environ. Sci. Technol. 53, 6292–6301 (2019).

    [11] J. Ma, Y. Xiong, X. Dai, F. Yu, Zinc spinel ferrite nanoparticles as a pseudocapacitive electrode with ultrahigh desalination capacity and long-term stability. Environ. Sci. Technol. Lett. 7, 118–125 (2020).

    [12] M. Liang, X. Bai, F. Yu, J. Ma, A confinement strategy to in situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Res. 14, 684–691 (2021).

    [13] F. Yu, H. Yin, X. Bai, J. Pan, X. Zhang et al., Cu@Cu2O/carbon for efficient desalination in capacitive deionization. Chin. Chem. Lett. 34, 108362 (2023).

    [14] X. Zhang, E.A. Toledo-Carrillo, D. Yu, J. Dutta, Effect of surface charge on the fabrication of hierarchical Mn-based Prussian blue analogue for capacitive desalination. ACS Appl. Mater. Interfaces 14, 40371–40381 (2022).

    [15] W. Shi, X. Liu, T. Deng, S. Huang, M. Ding et al., Enabling superior sodium capture for efficient water desalination by a tubular polyaniline decorated with Prussian blue nanocrystals. Adv. Mater. 32, 1907404 (2020).

    [16] J. Guo, Y. Wang, Y. Cai, H. Zhang, Y. Li et al., Ni-doping Cu-Prussian blue analogue/carbon nanotubes composite (Ni–CuPBA/CNTs) with 3D electronic channel-rich network structure for capacitive deionization. Desalination 528, 115622 (2022).

    [17] J. Cao, Y. Wang, L. Wang, F. Yu, J. Ma, Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high-performance desalination. Nano Lett. 19, 823–828 (2019).

    [18] S. Xing, Y. Cheng, F. Yu, J. Ma, Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity. J. Colloid Interface Sci. 598, 511–518 (2021).

    [19] J. Lei, Y. Xiong, F. Yu, J. Ma, Flexible self-supporting CoFe-LDH/MXene film as a chloride ions storage electrode in capacitive deionization. Chem. Eng. J. 437, 135381 (2022).

    [20] M. Liang, L. Wang, V. Presser, X. Dai, F. Yu et al., Combining battery-type and pseudocapacitive charge storage in Ag/Ti3 C2 tx MXene electrode for capturing chloride ions with high capacitance and fast ion transport. Adv. Sci. 7, e2000621 (2020).

    [21] X. Shen, Y. Xiong, R. Hai, F. Yu, J. Ma, All-MXene-based integrated membrane electrode constructed using Ti3C2Tx as an intercalating agent for high-performance desalination. Environ. Sci. Technol. 54, 4554–4563 (2020).

    [22] J. Zhang, J. Wang, F. Zhu, P. Mao, Z. Wu et al., Dispersing bentonite by electron beam irradiation and its adsorption performance of Cr(VI) in the aqueous solution. Water Air Soil Pollut. 233, 503 (2022).

    [23] Y. Xiong, F. Yu, S. Arnold, L. Wang, V. Presser et al., Three-dimensional cobalt hydroxide hollow cube/vertical nanosheets with high desalination capacity and long-term performance stability in capacitive deionization. Research 2021, 9754145 (2021).

    [24] F. Yu, L. Wang, Y. Wang, X. Shen, Y. Cheng et al., Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 7, 15999–16027 (2019).

    [25] X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15, 148 (2023).

    [26] Y. Li, J. Jiao, Q. Wu, Q. Song, W. Xie et al., Environmental applications of graphene oxide composite membranes. Chin. Chem. Lett. 33, 5001–5012 (2022).

    [27] S. Chen, Q. Wen, Y. Zhu, Y. Ji, Y. Pu et al., Boron-promoted reductive deoxygenation coupling reaction of sulfonyl chlorides for the C(sp3)-S bond construction. Chin. Chem. Lett. 33, 5101–5105 (2022).

    [28] X. Cai, J. Du, G. Zhong, Y. Zhang, L. Mao et al., Constructing a CeO2/ZnxCd1−xIn2S4 S-scheme hollow heterostructure for efficient photocatalytic H2 evolution. Acta Phys. Chim. Sin. (2023).

    [29] Y. Chen, C. Chen, X. Cao, Z. Wang, N. Zhang et al., Recent advances in defect and interface engineering for electroreduction of CO2 and N2. Acta Phys. Chim. Sin. (2023).

    [30] W. Jiang, H. Jiang, W. Liu, X. Guan, Y. Li et al., Pickering emulsion templated proteinaceous microsphere with bio-stimuli responsiveness. Acta Phys. Chim. Sin. (2023).

    [31] X. Wang, Y. Cheng, G. Xue, Z. Zhou, M. Zhao et al., Giant enhancement of optical second harmonic generation in hollow-core fiber integrated with GaSe nanoflakes. Acta Phys. Chim. Sin. (2023).

    [32] Y. Xiong, F. Yu, J. Ma, Research progress in chlorine ion removal electrodes for desalination by capacitive deionization. Acta Phys. Chim. Sin. 38, 2006037 (2020).

    [33] J. Mou, L. Chen, J. Fan, L. Zeng, X. Jiang et al., Construction of a highly active Rh/CeO2-ZrO2-Al2O3 catalyst based on Rh micro-chemical state regulation and its three-way catalytic activity. Acta Phys. Chim. Sin. 39, 2302041 (2023).

    [34] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    [35] S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore et al., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011).

    [36] A. Ali, M. Ammar, A. Mukhtar, T. Ahmed, M. Ali et al., 3D NiO nanowires@NiO nanosheets core-shell structures grown on nickel foam for high performance supercapacitor electrode. J. Electroanal. Chem. 857, 113710 (2020).

    [37] B. Gnana Sundara Raj et al., Pseudocapacitive properties of nickel oxide nanoparticles synthesized via ultrasonication approach. Ionics 26, 953–960 (2020).

    [38] C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 19, 5772–5777 (2009).

    [39] L. Fang, C. Wang, L. Huangfu, N. Bahlawane, H. Tian et al., Enabling full conversion reaction with high reversibility to approach theoretical capacity for sodium storage. Adv. Funct. Mater. 29, 1906680 (2019).

    [40] L. Fang, Z. Lan, W. Guan, P. Zhou, N. Bahlawane et al., Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 18, 107–113 (2019).

    [41] X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10, 1757–1763 (2017).

    [42] M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima et al., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007).

    [43] P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    [44] S. Wang, Y. Zou, F. Xu, C. Xiang, H. Peng et al., Morphological control and electrochemical performance of NiCo2O4@NiCo layered double hydroxide as an electrode for supercapacitors. J. Energy Storage 41, 102862 (2021).

    [45] J.A. Dawson, M.S. Islam, A nanoscale design approach for enhancing the Li-ion conductivity of the Li10GeP2S12 solid electrolyte. ACS Mater. Lett. 4, 424–431 (2022).

    [46] Z. Jia, R. Ding, W. Yu, Y. Li, A. Wang et al., Unraveling the charge storage and activity-enhancing mechanisms of Zn-doping perovskite fluorides and engineering the electrodes and electrolytes for wide-temperature aqueous supercabatteries. Adv. Funct. Mater. 32, 2107674 (2022).

    [47] S. Cao, Y. Li, Y. Tang, Y. Sun, W. Li et al., Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv. Mater. 35, e2301011 (2023).

    [48] H. Zhou, G. Zhu, S. Dong, P. Liu, Y. Lu et al., Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 35, e2211523 (2023).

    [49] X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, Z.-Q. Liu, Surface reorganization on electrochemically-induced Zn–Ni-co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. Int. Ed. 59, 6492–6499 (2020).

    [50] X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei et al., Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 26, 1889–1895 (2014).

    [51] J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22–33 (2019).

    [52] Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang et al., A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 20, 294–304 (2016).

    [53] S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces 5, 1596–1603 (2013).

    [54] X. Lou, C. Yuan, E. Rhoades, Q. Zhang, L. Archer, Encapsulation and Ostwald ripening of Au and Au–Cl complex nanostructures in silica shells. Adv. Funct. Mater. 16, 1679–1684 (2006).

    [55] C.-Y. Cao, W. Guo, Z.-M. Cui, W.-G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21, 3204–3209 (2011).

    [56] T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart et al., Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. Sci. Adv. 6, 0906 (2020).

    [57] X. Gong, S. Zhang, W. Luo, N. Guo, L. Wang et al., Enabling a large accessible surface area of a pore-designed hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization. ACS Appl. Mater. Interfaces 12, 49586–49595 (2020).

    [58] H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014).

    [59] Q. Pan, F. Zheng, D. Deng, B. Chen, Y. Wang, Interlayer spacing regulation of NiCo-LDH nanosheets with ultrahigh specific capacity for battery-type supercapacitors. ACS Appl. Mater. Interfaces 13, 56692–56703 (2021).

    [60] D. Li, S. Wang, G. Wang, C. Li, X. Che et al., Facile fabrication of NiCoAl-layered metal oxide/graphene nanosheets for efficient capacitive deionization defluorination. ACS Appl. Mater. Interfaces 11, 31200–31209 (2019).

    [61] B. Peng, Y. Chen, F. Wang, Z. Sun, L. Zhao et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv. Mater. 34, e2103210 (2022).

    [62] Q. Yin, D. Rao, G. Zhang, Y. Zhao, J. Han et al., CoFe–Cl layered double hydroxide: a new cathode material for high-performance chloride ion batteries. Adv. Funct. Mater. 29, 1900983 (2019).

    [63] S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020).

    [64] J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao et al., Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013).

    [65] X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang et al., Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011).

    [66] J. Guo, X. Xu, J.P. Hill, L. Wang, J. Dang et al., Graphene–carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. Chem. Sci. 12, 10334–10340 (2021).

    [67] B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020).

    [68] M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon et al., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015).

    [69] C. Zhang, D. Wang, Z. Wang, G. Zhang, Z. Liu et al., Boosting capacitive deionization performance of commercial carbon fibers cloth via structural regulation based on catalytic-etching effect. Energy Environ. Mater. 6, 12276 (2023).

    [70] W. Lei, J. Liang, P. Tan, S. Yang, L. Fan et al., Preparation of edible starch nanomaterials for the separation of polyphenols from fruit pomace extract and determination of their adsorption properties. Int. J. Biol. Macromol. 222, 2054–2064 (2022).

    [71] R. Liu, Y. Wang, Y. Wu, X. Ye, W. Cai, Controllable synthesis of nickel–cobalt-doped Prussian blue analogs for capacitive desalination. Electrochim. Acta 442, 141815 (2023).

    [72] N. Liu, L. Yu, B. Liu, F. Yu, L. Li et al., Ti3C2-MXene partially derived hierarchical 1D/2D TiO2/Ti3C2 heterostructure electrode for high-performance capacitive deionization. Adv. Sci. 10, 2204041 (2023).

    [73] H.-Y. Huang, Y.-H. Tu, Y.-H. Yang, Y.-T. Lu, C.-C. Hu, Dopant-designed conducting polymers for constructing a high-performance, electrochemical deionization system achieving low energy consumption and long cycle life. Chem. Eng. J. 457, 141373 (2023).

    [74] J. Liang, J. Yu, W. Xing, W. Tang, N. Tang et al., 3D interconnected network architectures assembled from W18O49 and Ti3C2 MXene with excellent electrochemical properties and CDI performance. Chem. Eng. J. 435, 134922 (2022).

    [75] Z. Bo, Z. Huang, C. Xu, Y. Chen, E. Wu et al., Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Mater. 50, 395–406 (2022).

    [76] Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu et al., Two-dimensional MXene-polymer heterostructure with ordered In-plane mesochannels for high-performance capacitive deionization. Angew. Chem. Int. Ed. 60, 26528–26534 (2021).

    [77] A. Amiri, Y. Chen, C. Bee Teng, M. Naraghi, Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater. 25, 731–739 (2020).

    [78] H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017).

    [79] R. Niu, H. Li, Y. Ma, L. He, J. Li An, insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochim. Acta 176, 755–762 (2015).

    [80] S. Wang, F. Li, A.D. Easley, J.L. Lutkenhaus, Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18, 69–75 (2019).

    [81] N. Shpigel, M.D. Levi, S. Sigalov, O. Girshevitz, D. Aurbach et al., In situ hydrodynamic spectroscopy for structure characterization of porous energy storageelectrodes. Nat. Mater. 15, 570–575 (2016).

    [82] P. Roach, D. Farrar, C.C. Perry, Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168–8173 (2005).

    [83] X. Sun, J. Sun, C. Wu, L. Guo, L. Hou et al., Unveiling composition/crystal structure-dependent electrochemical behaviors via experiments and first-principles calculations: rock-salt NiCoO2 vs. spinel Ni1.5Co1.5O4. Mater. Today Energy 19, 100592 (2021).

    [84] J. Yang, C. Yu, X. Fan, S. Liang, S. Li et al., Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016).

    [85] Z. Wang, Z. Zhao, Y. Zhang, X. Yang, X. Sun et al., Spatially self-confined formation of ultrafine NiCoO2 Nanoparticles@Ultralong amorphous N-doped carbon nanofibers as an anode towards efficient capacitive Li+ storage. Chemistry 25, 863–873 (2019).

    Jie Ma, Siyang Xing, Yabo Wang, Jinhu Yang, Fei Yu. Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination[J]. Nano-Micro Letters, 2024, 16(1): 143
    Download Citation