• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 8, 2709 (2024)
MEN Jing, FENG Junzong*, JIANG Yonggang, LI Liangjun..., HU Yijie and FENG Jian|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20240101 Cite this Article
    MEN Jing, FENG Junzong, JIANG Yonggang, LI Liangjun, HU Yijie, FENG Jian. Progress on Sol–Gel Synthesis and Related Structures of Carbon Aerogels[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2709 Copy Citation Text show less
    References

    [3] PEKALA R W. Organic aerogels from the polycondensation ofresorcinol with formaldehyde[J]. J Mater Sci, 1989, 24(9): 3221–3227.

    [4] WIENER M, REICHENAUER G, HEMBERGER F, et al. Thermal conductivity of carbon aerogels as a function of pyrolysis temperature[J]. Int J Thermophys, 2006, 27(6): 1826–1843.

    [6] HRUBESH L W, PEKALA R W. Thermal properties of organic and inorganic aerogels[J]. J Mater Res, 1994, 9(3): 731–738.

    [7] LU X P, NILSSON O, FRICKE J, et al. Thermal and electrical conductivity of monolithic carbon aerogels[J]. J Appl Phys, 1993, 73(2):581–584.

    [8] LU X, CAPS R, FRICKE J, et al. Correlation between structure and thermal conductivity of organic aerogels[J]. J Non Cryst Solids, 1995,188(3): 226–234.

    [9] REICHENAUER G, HEINEMANN U, EBERT H P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity[J]. Colloids Surf A Physicochem Eng Aspects,2007, 300(1/2): 204–210.

    [10] WIENER M, REICHENAUER G, BRAXMEIER S, et al. Carbon aerogel-based high-temperature thermal insulation[J]. Int J Thermophys,2009, 30(4): 1372–1385.

    [11] CHANG X Y, WU F, CHENG X T, et al. Multiscale interpenetrated/interconnected network design confers all-carbon aerogels with unprecedented thermomechanical properties for thermal insulation under extreme environments[J]. Adv Mater, 2024, 36(7):e2308519.

    [12] HEMBERGER F, WEIS S, REICHENAUER G, et al. Thermal transport properties of functionally graded carbon aerogels[J]. Int J Thermophys, 2009, 30(4): 1357–1371.

    [13] LU X, ARDUINI-SCHUSTER M C, KUHN J, et al. Thermal conductivity of monolithic organic aerogels[J]. Science, 1992,255(5047): 971–972.

    [14] LEE O J, LEE K H, JIN YIM T, et al. Determination of mesopore size of aerogels from thermal conductivity measurements[J]. J Non Cryst Solids, 2002, 298(2–3): 287–292.

    [15] FENG J Z, ZHANG C R, FENG J, et al. Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements[J]. ACS Appl Mater Interfaces, 2011, 3(12):4796–4803.

    [16] FENG J Z, ZHANG C R, FENG J. Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement[J]. Mater Lett, 2012, 67(1): 266–268.

    [18] FENG J Z, FENG J, ZHANG C R. Thermal conductivity of low density carbon aerogels[J]. J Porous Mater, 2012, 19(5): 551–556.

    [20] BOCK V, NILSSON O, BLUMM J, et al. Thermal properties of carbon aerogels[J]. J Non Cryst Solids, 1995, 185(3): 233–239.

    [22] BI C, TANG G H. Effective thermal conductivity of the solid backbone of aerogel[J]. Int J Heat Mass Transf, 2013, 64: 452–456.

    [23] TANG G H, BI C, ZHAO Y, et al. Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook[J]. Energy, 2015, 90:701–721.

    [24] AL-MUHTASEB S A, RITTER J A. Preparation and properties of resorcinol–formaldehyde organic and carbon gels[J]. Adv Mater, 2003,15(2): 101–114.

    [25] WU D C, FU R W, ZHANG S T, et al. Preparation of low-density carbon aerogels by ambient pressure drying[J]. Carbon, 2004, 42(10):2033–2039.

    [26] WU D C, FU R W, SUN Z Q, et al. Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde[J]. J Non Cryst Solids, 2005, 351(10–11): 915–921.

    [27] PEKALA R W, ALVISO C T, LU X, et al. New organic aerogels based upon a phenolic-furfural reaction[J]. J Non Cryst Solids, 1995, 188(1/2):34–40.

    [28] LONG D H, ZHANG J, YANG J H, et al. Chemical state of nitrogen in carbon aerogels issued from phenol–melamine–formaldehyde gels[J].Carbon, 2008, 46(9): 1259–1262.

    [29] JIA X F, DAI B W, ZHU Z X, et al. Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying[J]. Carbon, 2016, 108: 551–560.

    [30] FENG J Z, FENG J, ZHANG C R. Shrinkage and pore structure in preparation of carbon aerogels[J]. J Sol Gel Sci Technol, 2011, 59(2):371–380.

    [31] BOCK V, EMMERLING A, FRICKE J. Influence of monomer and catalyst concentration on RF and carbon aerogel structure[J]. J Non Cryst Solids, 1998, 225: 69–73.

    [32] TAMON H, ISHIZAKA H, ARAKI T, et al. Control of mesoporous structure of organic and carbon aerogels[J]. Carbon, 1998, 36(9):1257–1262.

    [33] TAMON H, ISHIZAKA H, MIKAMI M, et al. Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde[J]. Carbon, 1997, 35(6): 791–796.

    [34] YAMAMOTO T, NISHIMURA T, SUZUKI T, et al. Control of mesoporosity of carbon gels prepared by sol–gel polycondensation and freeze drying[J]. J Non Cryst Solids, 2001, 288(1–3): 46–55.

    [35] XU Y L, YAN M F, WANG S S, et al. Synthesis, characterization and electrochemical properties of carbon aerogels using different organic acids as polymerization catalysts[J]. J Porous Mater, 2017, 24(5):1375–1381.

    [36] MERZBACHER C I, MEIER S R, PIERCE J R, et al. Carbon aerogels as broadband non-reflective materials[J]. J Non Cryst Solids, 2001,285(1–3): 210–215.

    [37] REU? M, RATKE L. Subcritically dried RF-aerogels catalysed by hydrochloric acid[J]. J Sol Gel Sci Technol, 2008, 47(1): 74–80.

    [38] BARBIERI O, EHRBURGER-DOLLE F, RIEKER T P, et al.Small-angle X-ray scattering of a new series of organic aerogels[J]. J Non Cryst Solids, 2001, 285(1–3): 109–115.

    [39] FU R, ZHENG B, LIU J, et al. The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol[J].Adv Funct Mater, 2003, 13(7): 558–562.

    [40] MULIK S, SOTIRIOU-LEVENTIS C, LEVENTIS N. Time-efficient acid-catalyzed synthesis of Resorcinol?Formaldehyde aerogels[J]. Chem Mater, 2007, 19(25): 6138–6144.

    [41] MULIK S, SOTIRIOU-LEVENTIS C, LEVENTIS N. Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels[J]. Chem Mater, 2008, 20(22): 6985–6997.

    [42] HUANG X Y, YAN M, LU H L, et al. A novel method to synthesize high-strength elastic gel and carbonized aerogel[J]. Appl Surf Sci, 2022,580: 152240.

    [43] FAIRéN-JIMéNEZ D, CARRASCO-MARíN F, MORENOCASTILLA C. Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts[J]. Carbon, 2006, 44(11): 2301–2307.

    [44] BRANDT R, PETRICEVIC R, PR?BSTLE H, et al. Acetic acid catalyzed carbon aerogels[J]. J Porous Mater, 2003, 10(3): 171–178.

    [45] BRANDT R, FRICKE J. Acetic-acid-catalyzed and subcritically dried carbon aerogels with a nanometer-sized structure and a wide density range[J]. J Non Cryst Solids, 2004, 350: 131–135.

    [47] TAMON H, ISHIZAKA H. Influence of gelation temperature and catalysts on the mesoporous structure of resorcinol-formaldehyde aerogels[J]. J Colloid Interface Sci, 2000, 223(2): 305–307.

    [49] WU D C, FU R W, YU Z Q. Organic and carbon aerogels from the NaOH-catalyzed polycondensation of resorcinol–furfural and supercritical drying in ethanol[J]. J Appl Polym Sci, 2005, 96(4):1429–1435.

    [50] HORIKAWA T, HAYASHI J, MUROYAMA K. Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel[J]. Carbon,2004, 42(8–9): 1625–1633.

    [52] BARRAL K. Low-density organic aerogels by double-catalysed synthesis[J]. J Non Cryst Solids, 1998, 225: 46–50.

    [53] LI W C, LU A H, SCHüTH F. Preparation of monolithic carbon aerogels and investigation of their pore interconnectivity by a nanocasting pathway[J]. Chem Mater, 2005, 17(14): 3620–3626.

    [54] ZHANG Z, ZHAO S, CHEN G B, et al. Influence of acid-base catalysis on the textural and thermal properties of carbon aerogel monoliths[J]. Microporous Mesoporous Mater, 2020, 296: 109997.

    [55] GAN Z C, ZHAO S, ZHANG Z, et al. Hierarchically porous and high-strength carbon aerogel-based composite for solar-driven interfacial evaporation[J]. J Sol Gel Sci Technol, 2023, 107(2):388–400.

    [56] WU D C, FU R W. Synthesis of organic and carbon aerogels from phenol–furfural by two-step polymerization[J]. Microporous Mesoporous Mater, 2006, 96(1–3): 115–120.

    [57] WU D C, FU R W. Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels[J]. J PorousMater, 2008, 15(1): 29–34.

    [58] ZHOU X P, WANG Y F, XIAO L J, et al. Preparing carbon black aerogel quickly by chemical vapor deposition[J]. Compos Commun, 2023, 37: 101460.

    [59] ALLAHBAKHSH A, BAHRAMIAN A R. Self-assembled and pyrolyzed carbon aerogels: An overview of their preparation mechanisms, properties and applications[J]. Nanoscale, 2015, 7(34): 14139–14158.

    [60] RUBEN G C, PEKALA R W, TILLOTSON T M, et al. Imaging aerogels at the molecular level[J]. J Mater Sci, 1992, 27(16):4341–4349.

    [62] WU D C, FU R W, ZHANG S T, et al. The preparation of carbon aerogels based upon the gelation of resorcinol–furfural in isopropanol with organic base catalyst[J]. J Non Cryst Solids, 2004, 336(1): 26–31.

    [64] SALIGER R, BOCK V, PETRICEVIC R, et al. Carbon aerogels from dilute catalysis of resorcinol with formaldehyde[J]. J Non Cryst Solids,1997, 221(2/3): 144–150.

    [67] AMARAL-LABAT G, SZCZUREK A, FIERRO V, et al. Impact of depressurizing rate on the porosity of aerogels[J]. Microporous Mesoporous Mater, 2012, 152: 240–245.

    [68] LIANG C H, SHA G Y, GUO S C. Resorcinol–formaldehyde aerogels prepared by supercritical acetone drying[J]. J Non Cryst Solids, 2000,271(1/2): 167–170.

    [70] YANG Z, LI J, XU X J, et al. Synthesis of monolithic carbon aerogels with high mechanical strength via ambient pressure drying without solvent exchange[J]. J Mater Sci Technol, 2020, 50(15): 66–74.

    [71] JOB N, THéRY A, PIRARD R, et al. Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials[J]. Carbon, 2005, 43(12): 2481–2494.

    [73] KOCKLENBERG R, MATHIEU B, BLACHER S, et al. Texture control of freeze-dried resorcinol–formaldehyde gels[J]. J Non Cryst Solids, 1998, 225: 8–13.

    [74] TAMON H, ISHIZAKA H, YAMAMOTO T, et al. Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors[J]. Carbon, 2000, 38(7): 1099–1105.

    [75] ZHANG S Q, WANG J, SHEN J, et al. The investigation of the adsorption character of carbon aerogels[J]. Nanostruct Mater, 1999,11(3): 375–381.

    [76] LIN C, RITTER J A. Carbonization and activation of sol–gel derived carbon xerogels[J]. Carbon, 2000, 38(6): 849–861.

    [77] HANZAWA Y, HATORI H, YOSHIZAWA N, et al. Structural changes in carbon aerogels with high temperature treatment[J]. Carbon, 2002,40(4): 575–581.

    [78] MATOS I, FERNANDES S, GUERREIRO L, et al. The effect of surfactants on the porosity of carbon xerogels[J]. Microporous Mesoporous Mater, 2006, 92(1–3): 38–46.

    [79] THUBSUANG U, ISHIDA H, WONGKASEMJIT S, et al. Advanced and economical ambient drying method for controlled mesopore polybenzoxazine-based carbon xerogels: Effects of non-ionic and cationic surfactant on porous structure[J]. J Colloid Interface Sci, 2015,459: 241–249.

    [80] WU D C, FU R W, DRESSELHAUS M S, et al. Fabrication and nano-structure control of carbon aerogels via a microemulsiontemplated sol–gel polymerization method[J]. Carbon, 2006, 44(4):675–681.

    [81] BRUNO M M, COTELLA N G, MIRAS M C, et al. Characterization of monolithic porous carbon prepared from resorcinol/formaldehyde gels with cationic surfactant[J]. Colloids Surf A Physicochem Eng Aspects, 2010, 358(1–3): 13–20.

    [82] HAGHGOO M, YOUSEFI A A, ZOHURIAAN MEHR M J. Nano porous structure of resorcinol–formaldehyde xerogels and aerogels: Effect of sodium dodecylbenzene sulfonate[J]. Iran Polym J, 2012, 21(4): 211–219.

    [83] TONANON N, TANTHAPANICHAKOON W, YAMAMOTO T, et al. Influence of surfactants on porous properties of carbon cryogels prepared by sol–gel polycondensation of resorcinol and formaldehyde[J]. Carbon,2003, 41(15): 2981–2990.

    [84] NISHIYAMA N, ZHENG T, YAMANE Y, et al. Microporous carbons prepared from cationic surfactant–resorcinol/formaldehyde composites[J]. Carbon, 2005, 43(2): 269–274.

    MEN Jing, FENG Junzong, JIANG Yonggang, LI Liangjun, HU Yijie, FENG Jian. Progress on Sol–Gel Synthesis and Related Structures of Carbon Aerogels[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2709
    Download Citation