• Chinese Journal of Lasers
  • Vol. 46, Issue 8, 0810002 (2019)
Chenglong Wang1、2, Wenlin Gong1、*, Xuehui Shao3, and Shensheng Han1
Author Affiliations
  • 1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • 3 National Key Laboratory of Science and Technology on Aerospace Intelligent Control, Beijing 100089, China
  • show less
    DOI: 10.3788/CJL201946.0810002 Cite this Article Set citation alerts
    Chenglong Wang, Wenlin Gong, Xuehui Shao, Shensheng Han. Influence of Receiving Numerical Aperture and Rough Target Size on Ghost Imaging via Sparsity Constraint[J]. Chinese Journal of Lasers, 2019, 46(8): 0810002 Copy Citation Text show less
    References

    [1] Council N R. Laser radar: progress and opportunities in active electro-optical sensing[M]. Washington, D.C.: National Academy of Sciences, 6-106(2014).

    [2] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, Rhode Island. New York: IEEE, 3354-3361(2012).

    [3] Goodman J W. Speckle phenomena in optics: theory and applications[M]. Englewood Colorado: Roberts and Company Publishers, 7-163(2006).

    [4] Goodman J W. Statistical properties of laser speckle patterns[M]. ∥Dainty J C. Laser speckle and related phenomena. Berlin, Heidelberg: Springer, 9-75(1975).

    [5] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012).

    [6] Gong W L, Han S S. A method to improve the visibility of ghost images obtained by thermal light[J]. Physics Letters A, 374, 1005-1008(2010). http://www.sciencedirect.com/science/article/pii/S0375960109015667

    [7] Pan L, Deng C J, Gong W L et al. Influence of chirped-amplitude correlated imaging under incoherent detection[J]. Acta Optica Sinica, 38, 1011001(2018).

    [8] Yan Y Q, Zhao C Q, Xu W D et al. Research on the terahertz active ghost imaging technology[J]. Chinese Journal of Lasers, 45, 0814001(2018).

    [9] Du J, Gong W L, Han S S. The influence of sparsity property of images on ghost imaging with thermal light[J]. Optics Letters, 37, 1067-1069(2012).

    [10] Gong W L, Han S S. High-resolution far-field ghost imaging via sparsity constraint[J]. Scientific Reports, 5, 9280(2015). http://europepmc.org/articles/PMC4365410

    [11] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012). http://scitation.aip.org/content/aip/journal/apl/101/14/10.1063/1.4757874

    [12] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011). http://www.ncbi.nlm.nih.gov/pubmed/21283201

    [13] Chen W, Chen X D. Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit[J]. Optics Letters, 38, 546-548(2013).

    [14] Zhang P L, Gong W L, Shen X et al. Improving resolution by the second-order correlation of light fields[J]. Optics Letters, 34, 1222-1224(2009). http://www.opticsinfobase.org/abstract.cfm?uri=ol-34-8-1222

    [15] Wang C F, Zhang D W, Bai Y F et al. Ghost imaging for a reflected object with a rough surface[J]. Physical Review A, 82, 063814(2010). http://adsabs.harvard.edu/abs/2010PhRvA..82f3814W

    [16] Nan S Q, Bai Y F, Shi X H et al. Experimental investigation of ghost imaging of reflective objects with different surface roughness[J]. Photonics Research, 5, 372-376(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170803000101qWsZv3

    [17] Gong W L. Correlated imaging for a reflective target with a smooth or rough surface[J]. Journal of Optics, 18, 085702(2016). http://www.ingentaconnect.com/content/iop/jopt2/2016/00000018/00000008/art085702

    [18] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging[J]. Physical Review A, 87, 023820(2013).

    [19] Mei X D, Gong W L, Yan Y et al. Experimental research on prebuilt three-dimensional imaging lidar[J]. Chinese Journal of Lasers, 43, 0710003(2016).

    [20] Gong W L, Wang C L, Mei X D et al. Recent research progress and thoughts on GISC Lidar with respect to practical applications[J]. Infrared and Laser Engineering, 47, 0302001(2018).

    [21] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4472240

    [22] Martienssen W, Spiller E. Coherence and fluctuations in light beams[J]. American Journal of Physics, 32, 919-926(1964). http://scitation.aip.org/content/aapt/journal/ajp/32/12/10.1119/1.1970023

    [23] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004). http://www.emeraldinsight.com/servlet/linkout?suffix=b20&dbid=16&doi=10.1108%2FIJPCC-08-2014-0044&key=10.1109%2FTIP.2003.819861

    [24] Wang J, Kwon S, Li P et al. Recovery of sparse signals via generalized orthogonal matching pursuit: a new analysis[J]. IEEE Transactions on Signal Processing, 64, 1076-1089(2016). http://ieeexplore.ieee.org/document/7321045/

    Chenglong Wang, Wenlin Gong, Xuehui Shao, Shensheng Han. Influence of Receiving Numerical Aperture and Rough Target Size on Ghost Imaging via Sparsity Constraint[J]. Chinese Journal of Lasers, 2019, 46(8): 0810002
    Download Citation