• Acta Photonica Sinica
  • Vol. 48, Issue 3, 306001 (2019)
HUANG Guo-jia1、*, PENG Zhi-qing2、3, YANG Xiao-zhan2、3, and FENG Wen-lin2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/gzxb20194803.0306001 Cite this Article
    HUANG Guo-jia, PENG Zhi-qing, YANG Xiao-zhan, FENG Wen-lin. Sensing Performance of Hydrogen Sulfide Gas Based on Cu/Graphene Composite Membrane Coated Photonic Crystal Fiber[J]. Acta Photonica Sinica, 2019, 48(3): 306001 Copy Citation Text show less
    References

    [1] FENG Xu, YANG Xiao-zhan, HUANG Guo-jia, et al. Hydrogen sulfide sensor based on Cu ion-deposited graphence-coated tapered photonic crystal fiber[J]. Acta Photonica Sinica, 2017, 46(9): 0923002.

    [2] ABU-HANI A F S, GREISH Y E, MAHMOUD S T, et al. Low-temperature and fast response H2S gas sensor using semiconducting chitosan film[J]. Sensors and Actuators B: Chemical, 2017, 253: 677-684.

    [3] KUMAR V, SEN S, MUTHE K P, et al. Copper doped SnO2 nanowires as highly sensitive H2S gas sensor[J]. Sensors and Actuators B: Chemical, 2009, 138(2): 587-590.

    [4] ZHAO Ming-gang, WANG Xin-chang, NING Ling-ling, et al. Electrospun Cu-doped ZnO nanofibers for H2S sensing[J]. Sensors and Actuators B: Chemical, 2011, 156(2): 588-592.

    [5] MALEKALAIE M, JAHANGIRI M, RASHIDI A M, et al. Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide[J]. Materials Science in Semiconductor Processing, 2015, 38: 93-100.

    [6] GAO Xin-ming, SUN Yue, ZHU Chun-ling, et al. Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets[J]. Sensors and Actuators B: Chemical, 2017, 246: 662-672.

    [7] LI Hui-dong, FU Hai-wei, SHAO Min, et al. In-fiber Mach-Zehnder interferometer based on cascading fiber air bubble for high sensitivity liquid refractive index measurement[J]. Acta Photonica Sinica, 2016, 45(7): 0706006.

    [8] ZHAO Jing, LIN Hong-xiang, QIU Tang,et al. Light pressure measuring based on device of Mach-Zehnder interference[J]. Acta Photonica Sinica, 2016, 45(6): 0612002.

    [9] CHEN Hai-yun, CHEN Cheng, PENG Bao-jin, et al. Fourier analysis for fringe signals of fiber grating based on Mach-Zehnder interferometer[J]. Acta Photonica Sinica, 2016, 45(9): 0906002.

    [10] QIN Xiang, FENG Wen-lin, YANG Xiao-zhan, et al. Molybdenum sulfide/citric acid composite membrane-coated long period fiber grating sensor for measuring trace hydrogen sulfide gas[J]. Sensors and Actuators B: Chemical, 2018, 272: 60-68.

    [11] ZHAO Na, FU Hai-wei, SHAO Ming, et al. Research on high sensitivity temperature sensor based on Mach-Zehnder interferometer with waist-enlarged fiber bitaper[J]. Spectroscopy and Spectral Analysis, 2014, 34(6): 1722-1726.

    [12] CHEN Li-han, CHAN Chi-chiu, NI Kai, et al. Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper[J]. Sensors and Actuators B: Chemical, 2013, 178: 176-184.

    [13] ZHAO Na, LIN Qi-jing, JING Wei-xuan, et al. High temperature high sensitivity Mach-Zehnder interferometer based on waist-enlarged fiber bitapers[J]. Sensors and Actuators A: Physical, 2017, 267: 491-495.

    [14] NI Kai, DONG Xin-yong, CHAN Chi-chiu, et al. Miniature refractometer based on Mach-Zehnder interferometer with waist-enlarged fusion bitaper[J]. Optics Communications, 2013, 292: 84-86.

    [15] NI Kai, CHAN Chi-chiu, CHEN Li-han, et al. A chitosan-coated humidity sensor based on Mach-Zehnder interferometer with waist-enlarged fusion bitapers[J]. Optical Fiber Technology, 2017, 33: 56-59.

    [16] GENG You-fu, LI Xue-jin, TAN Xiao-ling, et al. High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper[J]. IEEE Sensors Journal, 2011, 11(11): 2891-2894.

    [17] MA Qi-fei, NI Kai, HUANG Ran. A carboxy-methyl cellulose coated humidity sensor based on Mach-Zehnder interferometer with waist-enlarged bi-tapers[J]. Optical Fiber Technology, 2017, 33: 60-63.

    [18] HUANG Xin-yue, LI Xue-ming, LI Yu, et al. Trace dissolved ammonia sensor based on porous polyelectrolyte membrane-coated thin-core fiber modal interferometer[J]. Sensors and Actuators B: Chemical, 2016, 226: 7-13.

    [19] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.

    [20] CALIZO I, BALANDIN A A, BAO W, et al. Temperature dependence of the Raman spectra of graphene and graphene multilayers[J]. Nano Letters, 2007, 7(9): 2645-2649.

    [21] YOON D, MOON H, CHEONG H, et al. Variations in the Raman spectrum as a function of the number of graphene layers[J]. Journal of the Korean Physical Society, 2009, 55(3): 1299-1303.

    [22] POCKRAND I. Raman spectroscopy of pyridine-exposed Ag, Cu and Au films in UHV. A comparative study[J]. Chemical Physics Letters, 1982, 85(1): 37-42.

    [23] DUGUID J, BLOOMFIELD V A, BENEVIDES J, et al. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd[J]. Biophysical Journal, 1993, 65(5): 1916-1928.

    [24] EMRANI A S, DANESH N M, LAVAEE P, et al. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles[J]. Food Chemistry, 2016, 190: 115-121.

    HUANG Guo-jia, PENG Zhi-qing, YANG Xiao-zhan, FENG Wen-lin. Sensing Performance of Hydrogen Sulfide Gas Based on Cu/Graphene Composite Membrane Coated Photonic Crystal Fiber[J]. Acta Photonica Sinica, 2019, 48(3): 306001
    Download Citation