• Photonics Research
  • Vol. 8, Issue 3, 421 (2020)
Junyu Qian1、2, Yujie Peng1、3、4、*, Yanyan Li1, Pengfei Wang1、2, Beijie Shao1、2, Zhe Liu1, Yuxin Leng1、3、5、*, and Ruxin Li1、3、6、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • 4e-mail: yjpeng@siom.ac.cn
  • 5e-mail: lengyuxin@mail.siom.ac.cn
  • 6e-mail: ruxinli@mail.shcnc.ac.cn
  • show less
    DOI: 10.1364/PRJ.385190 Cite this Article Set citation alerts
    Junyu Qian, Yujie Peng, Yanyan Li, Pengfei Wang, Beijie Shao, Zhe Liu, Yuxin Leng, Ruxin Li. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification[J]. Photonics Research, 2020, 8(3): 421 Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] G. Indebetouw. Optical vortices and their propagation. J. Mod. Opt., 40, 73-87(1993).

    [3] M. S. Soskin, M. V. Vasnetsov. Singular optics. Prog. Opt., 42, 219-276(2001).

    [4] R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, M. Kozuma. Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon. Phys. Rev. Lett., 103, 110503(2009).

    [5] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [6] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [7] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [8] S. Bretschneider, C. Eggeling, S. W. Hell. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett., 98, 218103(2007).

    [9] T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, M. Fujii. Two-color far-field super-resolution microscope using a doughnut beam. Chem. Phys. Lett., 371, 634-639(2003).

    [10] Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).

    [11] C. Hernandez-Garcia, A. Picon, J. San Roman, L. Plaja. Attosecond extreme ultraviolet vortices from high-order harmonic generation. Phys. Rev. Lett., 111, 083602(2013).

    [12] D. Gauthier, P. R. Ribic, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Geneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, G. De Ninno. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 8, 14971(2017).

    [13] L. Rego, K. M. Dorney, N. J. Brooks, Q. L. Nguyen, C. T. Liao, J. San Roman, D. E. Couch, A. Liu, E. Pisanty, M. Lewenstein, L. Plaja, H. C. Kapteyn, M. M. Murnane, C. Hernandez-Garcia. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [14] C. Hernandez-Garcia, L. Rego, J. San Roman, A. Picon, L. Plaja. Attosecond twisted beams from high-order harmonic generation driven by optical vortices. High Power Laser Sci. Eng., 5, e3(2017).

    [15] M. Koyama, A. Shimomura, K. Miyamoto, T. Omatsu. Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier. Appl. Phys. B, 116, 249-254(2014).

    [16] Y. F. Chen, Y. P. Lan. Dynamics of the Laguerre Gaussian TEM0, l* mode in a solid-state laser. Phys. Rev. A, 63, 063807(2001).

    [17] J. W. Kim, J. I. Mackenzie, J. R. Hayes, W. A. Clarkson. High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output. Opt. Express, 19, 14526-14531(2011).

    [18] A. Aadhi, G. K. Samanta. High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared. J. Opt., 20, 01LT01(2018).

    [19] A. Aadhi, V. Sharma, R. P. Singh, G. K. Samanta. Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source. Opt. Lett., 42, 3674-3677(2017).

    [20] K. Miyamoto, S. Miyagi, M. Yamada, K. Furuki, N. Aoki, M. Okida, T. Omatsu. Optical vortex pumped mid-infrared optical parametric oscillator. Opt. Express, 19, 12220-12226(2011).

    [21] A. Smith, D. Armstrong. Generation of vortex beams by an image-rotating optical parametric oscillator. Opt. Express, 11, 868-873(2003).

    [22] P. Wang, Y. Li, W. Li, H. Su, B. Shao, S. Li, C. Wang, D. Wang, R. Zhao, Y. Peng, Y. Leng, R. Li, Z. Xu. 2.6  mJ/100  Hz CEP-stable near-single-cycle 4  μm laser based on OPCPA and hollow-core fiber compression. Opt. Lett., 43, 2197-2200(2018).

    [23] Y. Chen, Y. Y. Li, W. K. Li, X. Y. Guo, Y. X. Leng. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier. Opt. Commun., 365, 7-13(2016).

    [24] Y. Li, Y. Chen, W. Li, P. Wang, B. Shao, Y. Peng, Y. Leng. Accurate characterization of mid-infrared ultrashort pulse based on second-harmonic-generation frequency-resolved optical gating. Opt. Laser Technol., 120, 105671(2019).

    CLP Journals

    [1] Shuiqin Zheng, Zhenkuan Chen, Qinggang Lin, Yi Cai, Xiaowei Lu, Yanxia Gao, Shixiang Xu, Dianyuan Fan. High-gain amplification for femtosecond optical vortex with mode-control regenerative cavity[J]. Photonics Research, 2020, 8(8): 1375

    [2] Zilong Zhang, Yuan Gao, Xiangjia Li, Xin Wang, Suyi Zhao, Qiang Liu, Changming Zhao. Second harmonic generation of laser beams in transverse mode locking states[J]. Advanced Photonics, 2022, 4(2): 026002

    Junyu Qian, Yujie Peng, Yanyan Li, Pengfei Wang, Beijie Shao, Zhe Liu, Yuxin Leng, Ruxin Li. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification[J]. Photonics Research, 2020, 8(3): 421
    Download Citation