• Journal of Advanced Dielectrics
  • Vol. 12, Issue 3, 2250010 (2022)
D. V. Kuzenko*
Author Affiliations
  • Science & Technology Center “Reaktivelektron” of the National Academy Science of Ukraine, Bakinskikh Komissarov Street, 83049 Donetsk, Ukraine
  • show less
    DOI: 10.1142/S2010135X22500102 Cite this Article
    D. V. Kuzenko. Temperature-activation mechanism of the temperature dependence of the dielectric constant of ferroelectric ceramics PZT[J]. Journal of Advanced Dielectrics, 2022, 12(3): 2250010 Copy Citation Text show less
    References

    [1] R. Xu, J. Karthik, A. R. Damodaran, L. W. Martin. Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nat. Commun., 5, 3120(2014).

    [2] R. Sabat, B. K. Mukherjee, W. Ren, G. M. Yang. Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J. Appl. Phys., 101, 064111(2007).

    [3] F. Li, Z. Xu, X. Wei, X. Yao. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method. J. Phys. D: Appl. Phys., 42, 095417(2009).

    [4] C. Miclea et al. Behavior of the main properties of hard and soft type piezoceramics with temperature from 2 to 600 K. Proc. Int. Semiconductor Conf. (CAS), October 2010, 301-304(2010).

    [5] S. Klusacek, J. Fialka, P. Benes, Z. Havranek. An experimental study of temperature effect on material parameters of PZT ceramic ring used in knock sensors. Proc. Seventh Int. Conf. Sensing Technology (ICST), December 2013, 863-868(2014).

    [6] L. Burianova, A. Kopal, J. Nosek. Characterization of advanced piezoelectric materials in the wide temperature range. Mater. Sci. Eng. B, 99, 187(2003).

    [7] S. Chen, X. Dong, C. Mao, F. Cao. Thermal stability of (1-x)–BiScO3–xPbTiO3 piezoelectric ceramics for high-temperature sensor applications. J. Am. Ceram. Soc., 89, 3270(2006).

    [8] Jr. G. A. Rossetti, A. G. Khachaturyan, G. Akcay, Y. Ni. Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J. Appl. Phys., 103, 114113(2008).

    [9] D. V. Kuzenko, V. M. Ishchuk, A. I. Bazhin, N. A. Spiridonov. Relaxation processes in lead zirconate-titanate based piezoelectric ceramics. 2. Influence of thermal treatment. Funct. Mater., 18, 66(2011).

    [10] D. V. Kuzenko. Critical temperature below the Curie temperature of ferroelectric ceramics PZT. J. Adv. Dielect., 11, 2150006(2021).

    [11] V. M. Ishchuk, D. V. Kuzenko. F-center mechanism of long-term relaxation in lead zirconate-titanate-based piezoelectric ceramics 1. After-heating relaxation. J. Adv. Dielect., 5, 1550036(2015).

    [12] A. N. Morozovska, E. A. Eliseev, D. Remiens, C. Soyer. Theoretical description of ferroelectric and pyroelectric hystereses in the disordered ferroelectric-semiconductor films. J. Appl. Phys., 100, 014109(2006).

    [13] W. J. Merz. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev., 95, 690(1954).

    [14] V. Boddu, F. Endres, P. Steinmann. Molecular dynamics study of ferroelectric domain nucleation and domain switching dynamics. Sci. Rep., 7, 806(2017).

    [15] R. C. Miller, G. Weinreich. Mechanism for the sidewise motion of 180∘ domain walls in barium titanate. Phys. Rev., 117, 1460(1960).

    [16] Yu. M. Poplavko, Физика Диэлектриков (Киев 1972).

    [17] V. M. Ishchuk. Peculiarities of ferro-antiferroelectric phase transition. 5. Relaxation dynamics of interphase domain walls. Ferroelectrics, 234, 151(1999).

    [18] A. S. Starkov, I. A. Starkov. Domain wall motion in the electric field of a piezoforce microscope probe: The effect of curvature and geometry of the domain wall. Ferroelectrics, 539, 28(2019).

    [19] Y. Kim et al. Non-Kolmogorov–Avrami–Ishibashi switching dynamics in nanoscale ferroelectric capacitors. Nano Lett., 10, 1266(2010).

    [20] A. Starkov, I. Starkov. Domain wall motion for slowly varying electric field. Ferroelectrics, 442, 1(2013).

    [21] Q. Meng et al. Velocity of domain-wall motion during polarization reversal in ferroelectric thin films: Beyond Merz’s Law. Phys Rev B, 91, 054104(2015).

    [22] S. Liu, I. Grinberg, A. M. Rappe. Intrinsic ferroelectric switching from first principles. Nature, 534, 360(2016).

    [23] H. Frayssignes et al. Internal friction in hard and soft PZT-based ceramics. J. Eur. Ceram. Soc., 24, 2989(2004).

    [24] E. M. Bourim et al. Elastic modulus and mechanical loss associated with phase transitions and domain walls motions in PZT based ceramics. J. Phys. IV, 6, 633(1996).

    [25] C. Wang, Q. F. Fang, Z. G. Zhu. Internal friction study of Pb(Zr,Ti)O3 ceramics with various Zr/Ti ratios and dopants. J. Phys. D. Appl. Phys., 35, 1545(2002).

    [26] E. M. Bourim, H. Tanaka. Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics. J. Appl. Phys., 91, 6662(2002).

    [27] L. Xiaoyu et al. Domain wall motion in perovskite ferroelectrics studied by nudged elastic band method. J. Phys. Chem. C, 122, 3091(2018).

    [28] Z. Dong et al. Depolarization of multidomain ferroelectric materials. Nat. Commun., 10, 2547(2019).

    [29] S. Zhukov et al. Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism. Phys. Rev. B, 82, 014109(2010).

    [30] J. Y. Jo et al. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. Phys. Rev. Lett., 102, 045701(2009).

    [31] A. Gruverman, D. Wu, J. F. Scott. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys. Rev. Lett., 100, 097601(2008).

    [32] A. Nautiyal et al. Polarization switching properties of spray deposited CsNO3: PVA composite films. Appl. Phys. A, 99, 941(2010).

    [33] A. Yu. Belov, W. S. Kreher. Simulation of microstructure evolution in polycrystalline ferroelectrics–ferroelastics. Acta Mater., 54, 3463(2006).

    [34] D. Phelan et al. Role of random electric fields in relaxors. PNAS, 111, 1754(2014).

    [35] D. V. Kuzenko, V. M. Ishchuk, A. I. Bazhin, N. A. Spiridonov. Long-time after effects and relaxation in piezoelectric ceramics. Ferroelectrics, 474, 156(2015).

    [36] V. M. Ishchuk, D. V. Kuzenko. F-centers mechanism of long-term relaxation in lead zirconate-titanate based piezoelectric ceramics. 2. After-field relaxation. J. Adv. Dielect., 6, 1650019(2016).

    [37] M. Vopsaroiu et al. Polarization dynamics and non-equilibrium switching processes in ferroelectrics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1867(2011).

    [38] A. Yu. Belov, W. S. Kreher, M. Nicolai. The evaluation of activation parameters for ferroelectric switching in soft PZT ceramics. Ferroelectrics, 391, 42(2009).

    [39] R. Indergand, A. Vidyasagar, N. Nadkarni, D. M. Kochmann. A phase-field approach to studying the temperature-dependent ferroelectric response of bulk polycrystalline PZT. J. Mech. Phys. Sol., 144, 104098(2020).

    [40] A. Chen, Y. Zhi, L. E. Cross. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction. Phys. Rev. B, 62, 228(2000).

    [41] L. He, D. Vanderbilt. First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B, 68, 134103(2003).

    [42] M. S. J. Islam. Ionic transport in ABO3 perovskite oxides: A computer modelling tour. J. Mater. Chem., 10, 1027(2000).

    D. V. Kuzenko. Temperature-activation mechanism of the temperature dependence of the dielectric constant of ferroelectric ceramics PZT[J]. Journal of Advanced Dielectrics, 2022, 12(3): 2250010
    Download Citation